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ABSTRACT

A modified conjugate gradient algorithm is proposed which uses a gradient average window to pro-

vide a trade-off between convergence rate and complexity. Simplification is obtained by replacing

the optimum step sizeαk by a normalized step sizeα. Improved convergence is obtained with even

small choices of window size.

1.0 INTRODUCTION

The limitations of the Least Mean Square (LMS) family of algorithms include sensitivity to parameter

selection, sensitivity to the eigenvalue spread of the input data and long training times required to obtain a

small error output. The later shortcomings are addressed in this paper. Partial conjugate direction methods

can be regarded as being somewhat intermediate between the method of steepest descent and Newton’s

method, in terms of complexity and convergence properties [1][2]. This gives the designer the option of

improving the convergence rate at the expense of increased complexity. Although the algorithms presented

here are meant for linear systems, the idea can be extended to nonlinear system identification using neural

networks [3][4][5], or as a method to speed convergence in systems limited by the backpropagtion algo-

rithm as in [6]

2.0 DESCRIPTION OF ALGORITHMS

Consider a transversal filter withm taps whereu(n) =[u(n), u(n-1),...u(n-m+1)]T represent the tap input

vector at timen, w(n) =[w1(n), w2(n),...wm(n)]T represents the tap weight vector at timen andd(n) repre-
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sents the desired response at timen. The algorithms proposed have a tap weight update equation based on

stepping in the direction of the negative gradient according to;

( 1)

whereµ is the step size. The LMS algorithm uses an instantaneous value of gradient in place of its ensem-

ble average so that we have the following update equation [7];

( 2)

where the true gradient has been replaced by the instantaneous estimate -2e(n)u(n). Note

that is the error signal andµ is the step size. In the RLS algorithm, the

true gradient is replaced by a data dependent estimate using the inverse of the autocorrelation matrix.This

significantly improves the convergence but also adds complexity.

2.1 Full Conjugate Gradient Algorithm

The full conjugate gradient algorithm is based on updating the tap weights with new directions that are

“non-interfering”, in otherwords, conjugate to each other. The concept of “non-interfering” directions can

be made mathematically explicit by considering a multidimensional functionf(·). Let pointx represent the

origin of a particular multidimensional system with a set of linearly independent direction vectorsx0,x1,

x2,...xm-1 which represent the coordinate system. Let∆x be an arbitrarym by 1 vector representing the dis-

tance from the originx along the direction vectorsxi. Then any function valuef(x+∆x) can be approxi-

mated by its Taylor series as;

( 3)

where
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The matrixQ is them × m Hessian matrix of the function atx, andb is them × 1 gradient of the function at

x. The approach in the conjugate direction method is to obtain a set of linearlyindependent direction vec-

tors x0,x1, x2,...xm-1 which are conjugate with respect toQ so that the optimum solution vectorxo mini-

mizes (3).xo can be expressed as;

( 5)

and the constants are given by [1];

( 6)

The conjugate gradient algorithm determines the appropriate orthogonal set of direction vectors and con-

stantsαi. If the direction vectors are mutually conjugate and linearly independent, then the initial guessx

will converge to the optimumxo after m steps, that isxm=xo. The conjugate gradient algorithm can be

implemented in a block processing form as in [8], or as an online method described in this paper.

By modifying the CGA for anonquadraticfunction as given in references [1][2] or [9], we can derive the

following algorithm that does not require the knowledge of either the Hessian or a line minimization along

a particular conjugate direction;

Full Conjugate Gradient Algorithm:

Initialization: w(0)=w0=0

For each iterationn, do steps1,2 and3.

Step 1. a)Starting with an initial weight vectorw0 compute the following;

( 7)

( 8)

( 9)

b) setd0 = -g0 ( 10)

Step 2. Repeat fork=0,1,. . . ,m-1
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a) setwk+1 = wk + αkdk, whereαk is the optimum step size, defined by; ( 11)

( 12)

b) Compute the gradients at the new weight vectorwk+1

gk+1 = [∇ f(wk+1)]T ( 13)
yk+1 = wk+1 - gk+1 ( 14)

pk+1 = [∇ f(yk+1)]T ( 15)

c) Unlessk=m-1, obtain the new direction vectordk+1= - gk+1 + βkdk ,where; ( 16)

( 17)

and repeatStep 2 (a).

Step 3. Replacew0 by wm and go back toStep 1.

The calculation ofβk is done according to the Fletcher-Reeves method rather than the Polak-Ribiere

method [1] since it tends to give a smoother convergence. The penalty for not having to calculate the Hes-

sian matrix is thattwo gradient calculations must be performed per iteration, one atwk+1 and one atyk+1

however, since the computation of the Hessian matrix is of orderO(m2) and the calculation of a single gra-

dient is of orderO(m) [13], the savings are substantial if the filter orderm is large.

2.2 Windowed Conjugate Gradient Algorithms

In the CGA algorithm above, it is assumed that the gradient calculations are true gradients and that at least

m conjugate directions can be calculated. However, this is expensive and sometimes impractical if real

time processing is required. If we use an instantaneous gradient estimate, as is done in the LMS algorithm,

the CGA will terminate in one step. This is because there will not be any more directions conjugate to the

initial direction vector. However, a better approximation to the gradient can be obtained by calculating the

estimate based on awindowof past values of inputs. If we construct a gradient estimate by averaging the

instantaneous gradient estimates over a specified numbernw of past values, there will be at leastnw lin-
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early dependent direction vectors in the gradient estimate. Specifically we replace the instantaneous esti-

mate by a windowed estimate as follows;

( 18)

With this gradient estimate, the CGA will terminate innw loops ofStep 2. Note that the same type of win-

dowed gradient calculation will be used in (7),(9),(13), and (15) except that in (9) and (15) the vectory is

used in place ofw.

2.2.1 Simplification of the Algorithm

At low values ofnw, the gradient estimates are poor resulting in inappropriate values of the step sizeαk. In

addition, the computation ofαk in (12) requires 2mnw multiplies and one division for a window of sizenw.

This step size can be replaced by a constant value as done in reference [9] or with a normalized stepα size

as is done here according to the following equation;

( 19)

where
γ is a number between 0 and 2.
ε is a small positive number to prevent the denominator from going to zero.

By removing the calculation ofαk, the calculation ofp andy are also no longer required, thus simplifying

the algorithm further. Theαk are therefore replaced by a normalized step size according to (19). The result-

ing algorithm obtained by combining the CGA with a windowed gradient calculation and normalized step

size is called theNormalized Fast Conjugate Gradient Algorithm(NFCGA).

Normalized Fast Conjugate Gradient Algorithm:

For each iterationn, doSteps 1 2and3.

Step 1.

a) Starting with an initial weight vectorw0, compute the following gradient estimate;
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( 20)

b) setd0 = -g0 ( 21)

c) compute the normalized step size parameterα according to (19);

Step 2. Repeat fork=0,1, .nw-1 wherenw ≤ m

a) setwk+1 = wk + αdk ( 22)

b) Compute an estimate of the gradientgk+1 at wk+1;

( 23)

c) Unlessk=mw-1, set dk+1= - gk+1 + βkdk,where; ( 24)

( 25)

Note that ifβk > 1, go directly to Step three.

RepeatStep 2 a).

Step 3. Replacew0 by wk, shift in a new value to the input data vectorx, and go back toStep 1.

It should be pointed out that checking forβk > 1 is a necessary step in the simplified version of this algo-

rithm. As shown in [11], linearly filtered noisy gradient algorithms can provide faster convergence than

(2) however, whengk are noisy, it is possible that and the newβk will be close to or larger

than 1. Successive iterations of Step 2 will only serve to move the weight vector away from the optimum

value make the algorithm unstable. Proakis [11] found it necessary to limit the value ofβk < 1 in a chan-

nel equalization experiment and obtained the conditions for stability which can be expressed as follows;

( 26)

whereλmax is the maximum eigenvalue of the input data. Specifically, the gradient averaging extends the

upper limit of the region of stability ofα from 2/λmax to 2(1+βk)/λmax but βk must be kept below 1.
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2.3 Complexity

The choice ofnw =1 implies no averaging in the gradient estimate and the NFCGA reverts to the NLMS

algorithm. For higher values ofnw the complexity approaches that of the RLS algorithm. The complexity

of the NFCGA isO(mnw
2) since inStep 2, the weights are updatednw times per iteration and the calcula-

tion of the averaged gradient isO(mnw). It is interesting to note that for a window sizenw=3, the complex-

ity is O(9m) is approximately equal to that of the Fast RLS algorithmO(8m) [10]. By comparison, the

standard RLS algorithm has complexityO(m2).

3.0 SIMULATIONS

In this section, we apply the NFCGA to the problem of system identification. The unknown system is mod-

elled by an impulse 50 taps long which is obtained from an exponentially decaying set of random values

between ±1. The input to the system is noise with a variance of 1.0. Uncorrelated noise is added to the sys-

tem output. The system is illustrated in Figure 1. Convergence curves showing the Normalized Mean

Squared Error (NMSE) are obtained by averaging 200 independent trials. The NLMS and NFCGA algo-

rithms both use a step size parametersγ = 0.5 and the RLS uses a forgetting factorα = 0.99. The results

illustrated in Figure 2 show that for the white noise input, the NFCGA converges somewhere between the

rate of the NLMS and RLS algorithms, depending on the size of the gradient averaging window. Figure 3

shows the results when the input is coloured by a first order autoregressive process according to

wherev(n) is a unit variance white noise sequence. As can be seen from

both Figure 2 and Figure 3, the choice ofnw determines the convergence rate. In all cases, the NFCGA

algorithm consistently outperforms the NLMS algorithm.

4.0 CONCLUSIONS

This paper has introduced a variant of the Partial Conjugate Gradient Algorithm based on using a gradient

averaging window and normalized step size to replace the optimum step size. The NFCGA has reduced

complexity as compared to the regular CGA but still has fast convergence even with low values of gradient

y n( ) 0.9y n 1–( ) v n( )+=



8

averaging window. Simulations illustrate that the NFCGA performance is between the NLMS and RLS

performance depending on the size of the gradient averaging window. The NFCGA can be extended to

nonlinear neural networks to improve convergence.
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ILLUSTRATIONS

FIGURE 1. System identification model. The input x(n) is either a white noise source w(n) or a first order
autoregressive process according to x(n)=0.9x(n-1)+w(n). The unknown channel consists of an
exponentially decaying impulse 50 taps long. H1 is a 50 tap transversal filter which is updated according to
the NLMS, RLS or NFCGA algorithm. An uncorrelated noise source with variance σN

2 is added to the
adaptive filter output y(n).
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FIGURE 2. Normalized MSE when using a white noise source to model the input signal x(n). Two hundred
independent trials are used in the averaging process.
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FIGURE 3. Normalized MSE when using a first order autoregressive signal to model the input signal x(n).
Two hundred independent trials are used in the averaging process
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