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ABSTRACT

A modified form of the partial conjugate gradient algorithm is presented which uses a gradient aver-

age window to provide a trade-off between convergence rate and complexity which is intermediate

between the conventional backpropagation (BP) algorithm and Newton methods that require the

storage and calculation of the Hessian of a matrix. Additional simplification is introduced by

replacing the optimum step sizeαk by a normalized step sizeα, in the same manner as the Normal-

ized LMS algorithm. The new algorithm demonstrates improved convergence rates for on-line

adaptive filtering with even small choices of window size.
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1.0 INTRODUCTION

The limitations of the conventional backpropagation algorithm include sensitivity to parameter selection,

the uncertainty of finding the global minimum of the error function, and excessively long training times

required to obtain a small error output. The later shortcoming, i.e. the slow convergence to either a local or

global minimum is the topic addressed in this study. Partial conjugate direction methods can be regarded as

being somewhat intermediate between the method of steepest descent (i.e. backpropagation) and Newton’s

methods, in terms of complexity and convergence properties. Thus they give the designer the option of
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improving the convergence rate at the expense of increased complexity. The specific application addressed

here is nonlinear adaptive filtering and system identification, where there is a single input and output.

2.0 DESCRIPTION OF LEARNING ALGORITHMS

Consider a multilayer feedforward neural network filter as shown in Figure 3. The input delay line consists

of p taps. The basic mechanism behind most supervised learning rules is to update the network weights and

bias terms until the mean-squared error between the network outputy and desired target signald is mini-

mized to below a predetermined level. The error signal at the output of a neuroni at timen is defined by;

( 1)

whereyi(n) and di(n) represent the output and desired signals respectively. The instantaneous cost function

Einst at timen is defined as;

( 2)

which is the instantaneous sum of squared errors of the network for NL output nodes, in this case equal to

one. The total cost functionEtot is defined as a sum of the instantaneous cost functions over the full train-

ing set;

( 3)

whereK is the number of training samples in a set. We can define alternate cost functions to be mini-

mized, for example, a partial cost function can be calculated by taking a windownw of past cost functions

calculated using the current weight valuew(n);

( 4)
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wherew(n) is a weight supervector consisting all the weights in the network, including bias weights. Spe-

cifically we may write themth order supervectorw(n) as;

( 5)

wherewl(n) is the weight vector connecting layerl to layer l+1 at time (n), m equals the total number of

weights in the network andL is the total number of layers in the network. The windowed conjugate gradi-

ent algorithm uses a cost function like (4) in the calculation of the gradient for updating the weight vector

each iteration.

The supervised learning algorithms described here all attempt to minimize a particular cost function

(referred to herein simply asE) by the delta rule [5];

( 6)

The weight vector is incremented at each step towards the optimum weight vector using the negative gradi-

ent at that point

2.1 Backpropagation Algorithm

The backpropagation (BP) algorithm is based on propagatingerrors back to hidden nodes using aninstan-

taneous gradient estimate. Referring to Figure 1, the activation level at the input to the sigmoidal nonlin-

earity of neuronj in layer l+ 1 is;

( 7)

whereui
l(n) represents both the output from the previous layer and the input to weight matrixwl at timen.

The output of nodej in layer l is;

( 8)

whereϕ represents the nonlinear activation function, in this case a hyperbolic tangent. The output error

e(n) produced at the output layer (i.e.l=L ) of the network is;
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( 9)

whereN[w(n),u0(n)] is the nonlinear output sequence produced by the input vectoru0(n). The complete

adaptation algorithm can be expressed as follows;

( 10)

( 11)

where;

ul represents the input vector to a layerl,

wl
ij represents the weight vector connecting nodei in layer l to nodej in layer l+1

sj
l represents the input activation to nodej in layer l

f ’ ( ) represents the derivative of the sigmoid function

δk
l represents the local gradient “delta” term of nodek in layer l.

L is the total number of layers in the network

n is the time index

η is the step size parameter

The backpropagation terms are illustrated in Figure 2.

2.2 Full Conjugate Gradient Algorithm

The full conjugate gradient algorithm is based on updating the tap weights with new directions that are

“non-interfering”, in other words, conjugate to each other. The concept of “non-interfering” directions can

be made mathematically explicit by considering a multidimensional functionf(·). Let pointx represent the

origin of a particular multidimensional system with a set of linearly independent direction vectorsx0,x1,

x2,...xm-1 which represent the coordinate system. Let∆x be them by 1 vector representing the distance
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from the originx along the direction vectorsxi. Then any function valuef(x+∆x)can be approximated by

its Taylor series as;

( 12)

where

( 13)

The matrixQ is them × m Hessian matrix of the function atx, andb is them × 1 gradient of the function at

x. The approach in the conjugate direction method is to obtain a set of linearlyindependent direction vec-

tors x0,x1, x2,...xm-1 which are conjugate with respect toQ so that the optimum solution vectorx* mini-

mizes (12).x* can be expressed as;

( 14)

and the constants are given by [1];

( 15)

The conjugate gradient algorithm determines the appropriate orthogonal set of direction vectors and con-

stantsαi. If the direction vectors are mutually conjugate and linearly independent, then the initial guessx

will converge to the optimumx* after m steps, that isxm=x* . The conjugate gradient algorithm can be

implemented in a block processing form as in [9], or as an on-line method described in this paper.

We now replace the general vectorx with direction vectord to avoid confusion, and state the full conjugate

gradient algorithm as follows:

1) Starting at some arbitrary weight vector w0 compute the gradient g0 at w0.

2) For k=0 toM,

a) wk+1=wk+αkdk whereαk minimizes the cost functionEinst according to (2).

b) computegk+1, the gradient atwk+1.
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c)compute the new direction vectordk+1= gk+1+β kdk, whereβ k is given by;

( 16)

3) Setw0=wM and return to step 1.

This form of the algorithm requires a line search in step 2a)which can be computationally intensive. How-

ever, by modifying the CGA for anonquadraticfunction as given in references [1][2] or [3], we can derive

the following algorithm that does not require the knowledge of either the Hessian or a line minimization

along a particular conjugate direction. This is done by replacing the calculation of the optimum step size

with an approximation as follows;

( 17)

wherepk is the gradient at (wk - gk). A summary of this algorithm is given below;

Full Conjugate Gradient Algorithm:

For each time samplen, perform the following three steps:
Step 1. a) Starting with an initial weight vectorw0, compute the following;

( 18)

( 19)

( 20)

b) setd0 = -g0 ( 21)
Step 2. Repeat fork=0,1,...,M-1 whereM is the size of the weight and bias vectorw;

a) setwk+1 = wk + αkdk, whereαk is the optimum step size, defined by; ( 22)

( 23)

b) Compute the gradients at the new weight vectorwk+1

gk+1 = [∇ f(wk+1)]T ( 24)

yk+1 = wk+1 - gk+1 ( 25)

pk+1 = [∇ f(yk+1)]T ( 26)

c) Unlessk=M-1, obtain the new direction vectordk+1= - gk+1 + βkdk ,where; ( 27)
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( 28)

and repeatStep 2 (a).

Step 3. Replacew0 by wM and go back toStep 1.

The calculation ofβk is done according to the Fletcher-Reeves method rather than the Polak-Ribiere

method since it has been shown that it gives smoother convergence towards the optimum weight vector

[15].

The penalty for not having to calculate the Hessian matrix is thattwo gradient calculations must be per-

formed for each iteration, one atwk+1 and one atyk+1, however, since the computation of the Hessian

matrix is of orderO(M2) and the calculation of a single gradient is of orderO(M) [17], the savings are sub-

stantial if the network orderM is large and partial gradient methods are used.

2.3 Windowed Partial Conjugate Gradient Algorithm

In the CGA algorithm above, it is assumed that the gradient calculations aretrue gradients and that at least

m conjugate directions can be calculated. However, this is expensive and sometimes impractical if real

time processing is required. For example, in the batch mode of training in neural networks, the perfor-

mance index is the sum of the squared errors over thefull training set of input output pairs. In real time fil-

tering and system identification, this is not always possible since we don’t have the required memory

storage or time to wait for all the training data to be presented before minimizing the performance index. In

this case, an on-line method of approximating the gradient is required. If we use aninstantaneousgradient

estimate, as is done in the LMS and backpropagation algorithms, the CGA will terminate in one step [1].

This is because there will not be any more directions conjugate to the initial direction vector. However, a

better approximation to the gradient can be obtained by calculating the estimate based on a window of past

values of inputs. The next two sections expands on this concept for the linear perceptron (FIR) adaptive

structure and then a multilayer perceptron.

βk

gk 1+
T

gk 1+

gk
Tgk

------------------------=
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2.3.1 Windowed Conjugate Gradient Algorithm for Linear Perceptrons

The simplest network consists of a single linear neuron trained by the LMS algorithm. The LMS algorithm

uses an instantaneous value of gradient in place of it ensemble average so that we have the following

update equation;

( 29)

where the true gradient has been replaced by the instantaneous estimate 2e(n)u(n). Note

that u(n)=[u(n), u(n-1) ....u(n-m+1)]T is the tapped delay line consisting of delayed samples of the input,

w(n)=[w1(n), w2(n) ....wm(n)]T is the tap weight vector,e(n) is the error signal,d(n) is the desired signal

value at timen, andµ is the step size.

If we construct a gradient estimate by averaging the instantaneous gradient estimates over a specified num-

ber nw of past values, there will be at leastnw linearly independent direction vectors in the gradient esti-

mate. Specifically we replace the instantaneous gradient estimate by a windowed estimate as follows;

( 30)

With this gradient estimate, the CGA will terminate innw loops ofStep 2. Note that the same type of win-

dowed gradient calculation will be used in steps (18),(20),(24), and (26) except that in (20) and (26) the

vectory is used in place ofw. Notice that in this case, the gradient vector is obtained by usingpastvalues

of the input vectoru and desired scalard with thecurrentvalues of the weight vectorw.

2.3.2 Simplification of the Algorithm

It can be argued that at low values ofnw, the gradient estimates are poor resulting in inappropriate values of

the step sizeαk. In addition, the computation ofαk in (23) requires 2mnw multiplies and one division for a

window of sizenw. This step size can be replaced by a constant value as done in reference [3] or with a nor-
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malized stepα size as proposed here. By removing the calculation ofαk, the calculation ofp andy are also

no longer required, thus simplifying the algorithm further. Theαk are therefore replaced by a normalized

step size as follows [4];

( 31)

where

γ is a number between 0 and 2
ε is a small positive number to prevent the denominator from going to zero
u(n) is the input vector to the transversal filter at timen.

The resulting algorithm obtained by combining the CGA with a windowed gradient calculation and nor-

malized step size is called the Normalized Fast Conjugate Gradient Algorithm (NFCGA). The complete

algorithm is summarized below:

Normalized Fast Conjugate Gradient Algorithm:(NFCGA)

For each iterationn, doSteps 1 2and3.

Step 1.

a) Starting with an initial weight vectorw0, compute the following;

( 32)

b) setd0 = -g0 ( 33)

c) compute the normalized step size parameterα according to;

( 34)

Step 2. Repeat fork=0,1,.nw-1 wherenw ≤ m

a) setwk+1 = wk + αdk ( 35)

b) Compute an estimate of the gradient atwk+1;

( 36)

c) Unlessk=nw-1, set dk+1= - gk+1 + βkdk ,where; ( 37)
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( 38)

Note that ifβk > 1, go directly to Step three.

RepeatStep 2 a).

Step 3. Replacew0 by wk and go back toStep 1.

It should be pointed out that checking forβk > 1 is a necessary step in the simplified version of this algo-

rithm. As shown in [6], linearly filtered noisy gradient algorithms can provide faster convergence than the

gradient estimate (29) however, whengk are noisy, it is possible that and the newβk will be

close to or larger than 1. Successive iterations of Step 2 will only serve to move the weight vector away

from the optimum value and possibly make the algorithm unstable. For example, Proakis [6] found it nec-

essary to limit the value ofβk < 1 in a channel equalization experiment and obtained the conditions for sta-

bility which can be expressed as follows;

( 39)

whereλmax is the maximum eigenvalue of the input data. Specifically, the gradient averaging extends the

upper limit of the region of stability ofα from 2/λmax to 2(1+βk)/λmax but βk must be kept below 1.

2.3.3 Windowed Conjugate Gradient Backpropagation Algorithm

The windowed conjugate gradient algorithm for a neural network is similar to the algorithm presented in

the previous section. The differences are (1) the network is nonlinear (2) the errors must be computed for

hidden layers and not just the output layer (3) the previous values of thehidden layeroutputs must be

retained as well as the output layers in order to compute the windowed gradient.

We compute the gradient based on the average squared error of awindow of training input/output pairs,

rather than thefull set of input/output pairs (as is done in the batch training mode) or asingleinput/output

βk
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T

gk 1+

gk
Tgk

------------------------=

gk 1+ gk≈
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0 α
2 1 βk+( )
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pair (as is done in the individual update backpropagation mode). The errors however are backpropagated to

previouslayers in the same way as the conventional BP algorithm. The important point is that the window

is moved for each new sample of the input that comes in i.e. it is asliding window of past input/output

pairs. The corresponding algorithm is termed the Windowed Fast Conjugate Gradient Algorithm

(WFCGA) and is a nonlinear extension of the fast linear CGA presented in the previous section. The

WFCGA is summarized below;

Windowed Fast Conjugate Gradient Algorithm: (WFCGA)

Initialization: Set weights and biases to random values.

For each iterationn, doSteps 1 2and3.

Step 1. a) Starting with an initial weight vectorw0, compute the following;

( 40)

whereginst(n-i) is the instantaneous gradient calculated with the current network weight vectorw0(n) and

past inputsuo(n-i) andd(n-i). Both ginst(n-i) andw0(n) are vectors of lengthM, whereM is the total num-

ber of weights in the network.

b) setd0 = -g0 ( 41)

c) compute the normalized step size parameterα according to;

( 42)

Note thatα could be replaced by a fixed step size here if desired;

Step 2. Repeat fork=0,1,.nw-1 wherenw ≤ m

a) setwk+1 = wk + αdk ( 43)

b) Compute an estimate of the gradient atwk+1;

( 44)

c) Unlessk=nw-1, set dk+1= - gk+1 + βkdk,where; ( 45)

( 46)
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Note that ifβk > 1, go directly to Step three.

RepeatStep 2 a).

Step 3. Replacew0 by wk and go back toStep 1.

The calculation of the instantaneous gradient is done by perform-

ing the following steps;

( 47)

( 48)

where;

( 49)

Refer to Figure 2 for an illustration of terms. Note that the gradient vectorginst(n-i) has the same size as the

supervectorwk(n) and is formed by placing individual gl
ij (n-i) in much the same way thatw(n) is formed in

(5).

2.4 Complexity

The choice ofnw =1 implies no averaging in the gradient estimate and the WFCGA reverts to the BP algo-

rithm. For higher values ofnw the complexity approaches that of algorithms that use the second derivative

for obtaining the optimum step size and direction which have complexityO(m2)[17]. The complexity of

the WFCGA isO(mnw
2) since inStep 2, the weights are updatednw times per iteration and the calculation

of the averaged gradient isO(mnw).
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3.0 SIMULATION

In this section, we apply the WFCGA to the identification of a nonlinear system constructed by generating

a signalx which is then hard limited and then convolved with an exponentially decaying 50 tap impulse.

The input signalx is obtained by a first order autoregressive (AR) process according to the equation

x(n)=0.9x(n-1)+0.2v(n) wherev(n) is a unit variance white noise sequence. The hard limiter has a linear

region up to 0.5, beyond which the output is clipped with a limiting function which has a slope of 0.2. The

system is illustrated in Figure 3. The results illustrated in Figure 4 show that for the AR input, the WFCGA

converges at a rate much faster than the conventional BP algorithm, depending on the size of the gradient

averaging windownw. The larger the choice ofnw, the higher the convergence rate. The final misadjust-

ment is approximately -18dB for all cases.

3.1 Application

In this section we attempt to identify a nonlinear loudspeaker in order to improve the performance of an

acoustic echo canceller (AEC) as encountered in handsfree telephony. The AEC structureshown in Fig-

ure 5 must be capable of identifying and tracking not only the reflected signals from the room, i.e. its

Acoustic Impulse Response (AIR), but also of modelling the nonlinear loudspeaker response Conventional

AECs utilize a linear adaptive transversal filter to model the room impulse response and cancel the echo

signal. The Normalized Least Mean Square (NLMS) algorithm [4] is the baseline by which performance of

alternative models is measured but it is incapable of reducing nonlinear distortion. A measure of the AEC

performance is the Echo ReturnLoss Enhancement (ERLE) which is defined as;

( 50)

whereσ2
p andσ2

e refer to the variances of the primary and errorsignals respectively andE is the statistical

expectation operator.

ERLE dB( ) 10 E p2 n( )[ ]
E e2 n( )[ ]
----------------------log

N ∞→
lim 10

σ2
p

σ2
e

--------log≅=
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The primary and reference data are collected by recording high volume signals in an anechoic chamber.

The volume is 100 dB Sound Pressure Level (SPL) as measured at 0.5 meters from the loudspeaker. The

microphone is placed 15 cm. from the loudspeaker output. The signals are sampled at 16 kHz and are later

transferred to a computer for off-line analysis. Two adaptive filter structures were tested to identify the sys-

tem (i) a 150 tap linear transversal filter trained using the NLMS algorithm (ii) a 3 layer TDNN with 150

input taps trained with both the CG and WFCGA. The experimental results shown in Figure 6 show the

results for all cases. The NLMS has fast convergence but is incapable of obtaining an ERLE of greater than

19 dB due to the nonlinear loudspeaker. The TDNN trained with the BP algorithm is capable of identifying

the system more effectively and achieves 25 dB ERLE but the initial convergence is much slower than the

NLMS algorithm. Training the TDNN using the WFCGA with a window sizenw=5 results in convergence

speed equivalent to the NLMS structure as well as obtaining 24 dB ERLE.

4.0 CONCLUSIONS

This paper has introduced a variant of the partial conjugate gradient algorithm based on using a gradient

averaging window and normalized step size to replace the optimum step size. The WFCGA has reduced

complexity as compared to the regular CGA but still has fast convergence for low values of gradient aver-

aging window. Simulations illustrate that the WFCGA has faster convergence than the BP depending on

the size of the gradient averaging window. Experimental results obtained for a nonlinear AEC illustrate the

effectiveness of the WFCGA in improving the initial convergence rate.
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ILLUSTRATIONS AND TABLES

FIGURE 1. Forward signal propagation. The single weight valuesθ are the bias weights.
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FIGURE 2. Backward error propagation.

δ2
l+ 1(n)

ϕ’(s1
l(n))

ϕ’(s2
l(n))

δ1
l+ 1(n)

neuronl neuronl+1

δ3
l+ 1(n)δ3

l(n)

δ2
l(n)

δ1
l(n)

ϕ’(s3
l(n)) ϕ’( s3

l+1(n))

ϕ’(s2
l+1(n))

ϕ’(s1
l+1(k))

v2
l(n)

v1
l(n)

v3
l(n)

v1
l+ 1(n)

v2
l+ 1(n)

v3
l+ 1(n)

layerl layer l+1

v22
l(n)

v21
l (n)

v
23

l(n)

w23

w22

w21

+

+

++

+

+



18

FIGURE 3. System identification model. The system to be identified is a fixed nonlinearity consisting of a
linear portion up the value of 0.5 followed by a squashing function of slope =0.2. The output of this
nonlinearity is then passed through a dispersive channel consisting of an exponentially decaying random
noise impulse of length 50 taps. The neural network consists of a 50 tap input delay line followed by one or
two hidden layers. The input x is a first order autoregressive sequencex(n)=0.9x(n-1) + 0.2v(n) where v(n) is
a white noise sequence with variance =1.0.
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FIGURE 4. Comparison of the normalized MSE using the BP and WFCGA algorithms withnw=2, 5 and 10
for the system identification model of Figure 3. A first order autoregressive signal is used to model the input
signal x. Two hundred independent trials are used in the averaging process.
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FIGURE 5. Echo cancellation system utilizing a linear transversal filter or a tapped delay line neural
network for identification of the nonlinear loudspeaker.
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FIGURE 6. Experimental results comparing the converged ERLE curves of a 150 tap FIR structure
trained using the NLMS algorithm with that of a TDNN trained using both the conventional BP algorithm
and the WFCGA.
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