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Abstract

This thesis deals with nonlinear adaptive filtering for identification of systems comprised of

weakly nonlinear systems convolved with large order linear systems. The intended use is for

acoustic echo cancellers (AEC’s) operating in handsfree telephones (HFT’s) where a microphone

and nonlinear loudspeaker share a common enclosure. 

Limitations of AEC’s are first determined using analytical models verified with simple computer

simulations and real-world experimental data. It is shown that enclosure resonances and vibra-

tions, loudspeaker nonlinearity, system undermodelling and audio transducer quality all affect the

achievable Echo Return Loss Enhancement (ERLE) performance. 

A third-order Volterra filter achieves 6.2dB of improved ERLE over a linear Finite Impulse

Response (FIR) filter, however with a training complexity almost 20 times that of the simple Nor-

malized Least Mean Square (NLMS) algorithm.

Simple feedforward neural based filters are shown to achieve the best performance/complexity

trade-off for compensating nonlinear loudspeaker effects in AEC’s, compared to Volterra and

recursive Infinite Impulse Response (IIR) structures. Using a mixed linear/sigmoidal activation

function in the neural based filters, several dB’s of ERLE improvement can be achieved depending

on the range of the linear section and the severity of nonlinearity. 

A simple two-stage neural filter is proposed. It achieves an 11 dB improvement over the NLMS-

FIR structure with only a 2% increase in complexity. The activation function is then modified to be

adaptive, with a resulting ERLE improvement of between 1 and 5 dB over the fixed activation

function architecture. 



iv

A nonlinear fast conjugate gradient (NFCG) backpropagation algorithm is developed next for

improving the convergence rate for coloured signals like speech. The algorithm has a simple gradi-

ent-based update and provides a complexity/performance trade-off determined by the size of a gra-

dient window nw. When applied to the two stage neural filter using real speech signals, a 5 dB

improvement in ERLE is achieved compared to the Stabilized Fast Transversal Filter (SFTF) with

the same initial convergence rate as the SFTF algorithm.

A linear version of the NFCG is also developed using a line search based on a variable step size

technique.
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Chapter 1
Introduction

1.1  Motivation for the Research

Real-time system identification, filtering and/or tracking of signals produced in nonstationary

environments requires the use of an adaptive filter. Much of the literature available on adaptive fil-

ter theory deals only with linear structures which have difficulty in accurately identifying systems

that include nonlinearities. In the real world, examples of such nonlinear systems include the pro-

duction of human speech signals, audio transducers such as loudspeakers and channel nonlineari-

ties in high-speed data communications channels, usually caused by amplifier circuits operating

near saturation. 

A handsfree telephone (HFT) is one such system that contains a nonlinear component, the loud-

speaker. An acoustic echo canceller (AEC) designed for use in an HFT attempts to remove the

acoustic echos by modelling the loudspeaker-room-enclosure-microphone (LREM) system and

subtracting an echo replica from the microphone signal. However, in this case, the system to be
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identified includes a reverberant room as well as the loudspeaker and therefore is a cascade of both

linear and nonlinear sections that have memory associated with the process. The acoustic echoes

associated with reverberant rooms can be modelled effectively by linear filters consisting of all-

zero adaptive Finite Impulse Response (FIR) structures or in some cases Infinite Impulse Response

(IIR) structures consisting of one or more poles. A loudspeaker is a nonlinear device that exhibits

hysteresis, hence a structure that can process nonlinear temporal information is required to

achieve significant modelling accuracy. Existing linear algorithms in the AEC domain are there-

fore unable to achieve high echo return loss enhancement (ERLE) when the loudspeaker is operat-

ing in the nonlinear region. This idea was originally suggested by Knappe and Goubran [1] as a

steady state performance limitation in acoustic echo cancellers and was a primary motivating fac-

tor for the work presented here.

This thesis is primarily about the study of nonlinear algorithms aimed at identifying cascaded lin-

ear and nonlinear systems with specific application to the reduction of nonlinear loudspeaker dis-

tortion effects encountered in the domain of acoustic echo cancellation.

Four basic questions are answered in this thesis:

1. What sort of limitations do typical nonlinear loudspeakers present to achieving high ERLE val-

ues in typical HFT’s ? Small inexpensive loudspeakers generate several percent nonlinear dis-

tortion at volumes typically used in the handsfree mode, and thus limit the ERLE to values less

than 30 dB in most cases.

2. What kind of filters are best suited for nonlinear AEC applications and how can we arrive at

that conclusion? Feedforward structures offer simplicity of design compared to recursive struc-

tures, especially in the nonlinear domain. Structures proposed also need to be robust in noisy
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environments. 

3. How can an efficient nonlinear structure and training algorithm be designed that is not overly

complicated yet provide reasonable improvements in performance? Low complexity is of

utmost importance in AEC’s, hence the nonlinear training algorithm should provide a trade-off

between complexity and performance. Structures and algorithms based on a combination of

neural networks and linear adaptive filtering theory provide encouraging results.

4. Can the new structures/algorithms be successfully applied in real-world applications? The

nonlinear AEC’s are applied to experimental data collected on several commercially available

HFT’s in conference environments with positive results using both noise and speech signals.

Throughout the thesis, the handsfree telephony AEC is used to demonstrate the effectiveness of the

proposed algorithms and structures, with verification using field data collected using a number of

commercially available HFT’s in different anechoic and conference room environments. However

it should be stressed that in general these algorithms can be applied to many fields, for example,

public address (PA) systems, active noise control using remotely placed loudspeakers to cancel

unwanted signals, and identification of channel nonlinearities in high speed data communications

channels.

1.2  Contributions of the Thesis

The primary contribution of this thesis is the development of a set of new nonlinear adaptive filter

structures and algorithms to compensate for nonlinear loudspeaker distortion effects in AEC’s

intended for handsfree telephony. The procedure consists of the following steps
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• Determination of the limitations in AEC’s due to nonlinear transducers.

• Evaluation of existing nonlinear structures for compensating nonlinearity in AEC’s.

• Construction of new architectures for compensating for transducer nonlinearity.

• Development of an efficient training algorithms for the proposed structures.

• Application and testing of the new nonlinear structures using speech and noise signals recorded

in HFT’s in audio conference environments.

The main contributions to the field of nonlinear adaptive filtering are as follows:

1. Development of a two stage neural filter consisting of an FIR filter and tapped delay line neural

network (TDNN) structure, which successfully models loudspeaker nonlinearity convolved

with an echo path. 

2. Development and use of a mixed linear sigmoidal activation (squashing) function to replace the

hyperbolic tangent function which is commonly used in neural networks.

3. Extension of the mixed linear sigmoidal activation function to the fully adaptive case.

4. Development of a new temporal adaptation mechanism to adapt the variable activation function

which is sandwiched between FIR synaptic filters.

5. A fast nonlinear conjugate gradient algorithm for improved convergence speed is developed

and then applied to the nonlinear structures above to improve performance, which is verified

using real speech signals.

6. A linear algorithm based on the fast conjugate gradient algorithm and the concept of variable

step size line search is constructed. A simplified version using gradient reuse is also developed.

A full test setup for performing experimental testing is constructed, consisting of various amplifi-

ers, filters and interface circuits. Experimental determination of the performance limitations of the
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test setup using real equipment in anechoic and conference rooms conditions is made. During this

phase, it was determined that enclosure vibration, resonances and rattling effects also place a limit

on the achievable steady state acoustic echo cancellation1. Subsequently the following statements

can be made which represent a secondary contribution, specifically to the design and development

of HFT’s:

1. Enclosure vibration can be a more serious problem than nonlinear distortion at high loud-

speaker volumes for typical desktop HFT’s in a low noise conference room.

2. Effective design of the acoustic enclosure is necessary to enable the nonlinear algorithms to

work properly. Otherwise, the vibration and resonances within the enclosure mask the loud-

speaker nonlinearity.

3. A microphone with a low mechanical vibration sensitivity is necessary to mitigate vibration

effects.

4. The steady state performance limitations of AEC’s for HFT’s in a typical low noise conference

room environment are in order of severity for the cases studied (i) undermodelling2 (ii) loud-

speaker nonlinearity3 (iii) vibration and resonances (iv) room noise (v) DSP and algorithmic

noise.

1.  No mention of the performance limitation caused by vibration and resonances has yet been found in the 
literature on AEC’s.
2.  Undermodelling is a more serious limitation than other factors when the order of the AEC is much less 
than the LREM.
3.  Only if vibration and resonances are controlled through appropriate enclosure design.
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1.3  Thesis Outline and Scope

This thesis has four central chapters: Chapter 4 discusses the acoustic echo cancellation problem

with subsections on the experimental setup and performance limitations, including important new

results on the effects of vibration and resonances within the HFT enclosure, and nonlinear loud-

speaker distortion. Several new nonlinear adaptive structures and algorithms are developed and

tested in Chapters 5, and 6. Supporting Chapters 2,3 and 7 review loudspeaker dynamics, provide

the necessary background theory in nonlinear adaptive filtering, and summarize and draw conclu-

sions. 

Chapter Two presents a quick review of loudspeaker basics, including the lumped parameter

equivalent model and an analysis of low frequency nonlinear distortion.

Chapter Three discusses the principles of nonlinear adaptive filtering and corresponding adapta-

tion algorithms. It briefly introduces linear FIR and IIR filters, Volterra filters, and neural net-

works. This chapter furnishes the reader with the necessary background theory and lays the

foundation for the following chapters.

Chapter Four discusses the handsfree telephone problem, presents a description of the experi-

mental setup and discusses the steady state performance limitations of AEC’s such as undermodel-

ling of the acoustic transfer function, room noise and DSP/algorithmic noise. A subsection on IIR

structures for AEC is presented. Subsections studying the effect of enclosure vibration and reso-

nances within the HFT enclosure, as well as effects of nonlinear transducers are also provided.

Simulation and experimental results are presented throughout to provide a measure of the relative

severity of the performance limitations. 
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Chapter Five first presents a comparison of Volterra and neural filters for nonlinear loudspeaker

compensation. Subsequently a two stage neural filter is developed to identify a nonlinear LREM

and provide measurable improvements in performance. A mixed linear-sigmoidal activation func-

tion is proposed and a training algorithm is derived. A new architecture and temporal training

algorithm for adaptive activation functions sandwiched between temporal FIR synapses is also

derived. The behavior of the proposed models is demonstrated using both simulated and experi-

mental HFT data.

Chapter Six outlines a new fast version of the conjugate gradient algorithm for enhancing the con-

vergence rate of neural filters. The performance of the algorithm is subsequently tested using com-

puter simulations and field data consisting of both noise and speech signals. A linear variation of

of the fast conjugate gradient algorithm using the concept of variable step size line search and gra-

dient reuse is also presented. 

Chapter Seven summarizes the results and draws conclusions arising from the research work.

Significant contributions are highlighted and finally, future research directions are suggested.
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Chapter 2
The Electrodynamical Loudspeaker

As mentioned in the first chapter, one focus of this thesis is in applying nonlinear filtering tech-

niques to compensate for loudspeaker nonlinearity in AEC’s for handsfree telephony. Before pro-

ceeding, a review of loudspeaker dynamics and an analysis of loudspeaker distortion at low

frequencies is necessary. 

2.1  Loudspeaker Model

In an electrodynamic loudspeaker, sound waves are produced by a diaphragm which moves in

response to an alternating current passing through a voice coil which is positioned in a permanent

magnetic field. Figure 2.1 illustrates a typical loudspeaker transducer, and equivalent lumped

parameter model [2]. The diaphragm can be plane, cone or dome-shaped. The diaphragm is sus-

pended at the outer edge by means of a flexible surround or rim, and at the inner edge by a spider.

The spider is rotationally symmetrical and centers the voice coil. It has a large stiffness for radial

motion and a smaller but finite stiffness for axial motion. The simplified model of a loudspeaker

behaves like a mass-spring system. The spring part is formed by the suspension and spider and the
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mass is formed by the diaphragm, the voice coil, the mass of the cone/suspension system and the

air load [3].

In model of Figure 2.1, the parameter e(t) indicates the internal voltage of the generator, R is the

total electrical resistance of the generator and voice coil, L is the inductance of the voice coil, i(t) is

the amplitude of the current in the voice coil, Eb is the voltage induced in the electrical circuit by

the mechanical circuit, which equals Bl dx(t)/dt. B is the magnetic flux density in the air gap, l is

the length of the voice coil conductor, and x is the cone displacement. In the mechanical circuit m

is the total mass of the coil, cone and air load. rM is the total mechanical resistance due to dissipa-

tion in the air load and the suspension system. C is the compliance of the suspension and fM is the

force generated in the voice coil and equals Bli. The mechanical radiation resistance Zrad has a real

-
Eb=Bl dx(t)/dt

dx(t)/dt

+

-

LR C m rM

fM=Bli(t)

+

-

e(t)

i(t)

Electrical Circuit Mechanical Circuit

Dust Cap

Cone-Shaped Diaphragm

Spider

Voice Coil

Outer Cone Suspension (surround)

Permanent Magnet

N SS

+
Zrad

FIGURE 2.1   Loudspeaker electro-mechanical model. 
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and imaginary part.

As shown in Figure 2.1 the electrical and mechanical part are connected through the magnetic

field. The resulting equations of motion can be described by two coupled nonlinear differential

equations [4]:

( 2.1)

(2.2)

where the displacement dependent parameters L(x(t)), B(x(t)) and C(x(t)) have been modelled by a

Taylor series expansion, which can be truncated after an arbitrary number of terms:

(2.3)

(2.4)

(2.5)

In these expressions, Li, Bi and Ci are modelling constants up to the i-th order and x(t) is the time

dependent displacement of the voice coil. If we assume for the moment that B and C are linear

such that the higher order coefficients in (2.4) and (2.5) are equal to zero, and that in the low fre-

quency range, the inductance is negligible so that the approximation L(x(t))=0 is valid, then asec-

ond order linear transfer function in the Laplace domain can be obtained as [5];

(2.6)

A loudspeaker has several sources of nonlinearity which occur in the motor part (i.e. the magnet

e t( ) i t( )R L x t( )( ) i t( )d
td

----------- B x t( )( )l x t( )d
td

------------+ +=

B x t( )( )li t( ) m
t

2

d
d x t( )= rM td

d x t( ) x t( )
C x t( )( )
------------------+ +

L x t( )( ) L0 L1x t( ) L2 x t( )( )2+ +=

B x t( )( ) B0 B1x t( ) B2 x t( )( )2+ +=

C x t( )( ) C0 C1x t( ) C2 x t( )( )2+ +=

X s( )
E s( )
-----------

B0l R⁄

s2m s rM B0l( )2 R⁄+[ ] 1 C0⁄+ +
--------------------------------------------------------------------------------=
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system and voice coil), in the mechanical part, and due to nonlinear sound radiation. These compo-

nents have a frequency dependency, however, if we restrict our discussion to the lower frequen-

cies, we only have to take into account those nonlinearities that depend closely on the voice coil

excursion [2]. The most prominent nonlinearities corresponding to ,  and

are [4]:

• The electric self inductance L(x(t)) which depends on the voice-coil excursion. This is because

the voice coil protrudes from the central position, yielding a reluctance force Fx (or back elec-

tromotive force) proportional to .

• The force factor B(x(t))l, which depends on the voice-coil excursion. In the case of constant

current drive, the force on the voice coil depends on the position of the coil, since is a

function of the voice coil displacement. A typical force factor vs. displacement curve is shown

in Figure 2.2 a).

• Suspension system nonlinearity. The force vs. displacement curves of the spider and surround

are not straight lines and show hysteresis. A typical curve is shown in Figure 2.2 b). 

Generally, the mechanomotive force in the voice coil is a nonlinear function of the displacement x.

The compliance of the suspension system can be obtained by;

(2.7)

where represents the force deflection characteristic of the loudspeaker cone suspension

system and  is the nonlinear suspension stiffness factor.

Substituting (2.7) into (2.2), we obtain;

L x t( )( ) B x t( )( )

C x t( )( )

i t( )2

B ld∫

C x t( )( ) x t( )
fM x t( )( )
-------------------- 1

α βx t( ) γx t( )2+ +
-------------------------------------------- 1

k x t( )( )
-----------------= = =

fM x t( )( )

k x t( )( )
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(2.8)

Suspension system nonlinearity manifests itself as soft clipping at the loudspeaker output and

results in odd-order harmonics under large signal conditions. As well, there is a frequency depen-

dence. Equations (2.1) and (2.2) show that at high frequencies, the derivatives are large, so that the

effect of the nonlinearities is small, i.e. the system is weakly nonlinear. However, at low frequen-

cies, the converse is true and the effect of the nonlinearities is more pronounced. It should also be

noted that distortion does not only occur at large signal levels. Significant distortion also occurs at

extremely low levels due to unbalanced 2-point suspension, i.e., the surround and the spider

[2],[3]. 

In the HFT domain, it is necessary to use small (i.e. inexpensive) loudspeakers. To obtain reason-

ably comfortable listening levels in the lower frequencies, excessive diaphragm excursions are

needed, which will generate significant distortion products which can be 5% to 10% of the signal

amplitude.

B x t( )( )li t( ) m
t

2

d
d x t( )= rM td

d x t( ) αx t( ) βx t( )2 γx t( )3+ + + +

FIGURE 2.2   (a) Typical force vs. displacement curve of a loudspeaker. (b) Typical force vs. 
displacement curve of the spider.

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Displacement x [mm]

Fo
rc

e 
Fa

ct
or

 B
l [

N
/A

]

−8 −6 −4 −2 0 2 4 6 8
−10

−8

−6

−4

−2

0

2

4

6

8

10

Force [N]

D
is

pl
ac

em
en

t x
 [m

m
]

(a) (b)



2.2 Nonlinear Modelling 13 

2.2  Nonlinear Modelling

An equation determining the excursion of the voice coil x may be constructed by forming a higher

order differential equation by substituting (2.3), (2.4), and (2.5) into (2.1) and (2.2) and eliminating

the parameter i. The solution to this equation may be attempted by the use of a Volterra series

expansion (See [4]), however hysteresis effects cannot be modelled by this method. As well, a

loudspeaker response cannot be written as an ordinary power series as is possible for a memoryless

(dispersion-free) system, like a network with resistors. For the memoryless case, the Volterra series

degenerates into a power series. When dispersive effects are included, the size of the Volterra

model can become large.

Alternatively, we may cast the difference equations in state space form [6]. In the equations that

follow, L(x) =L0 is assumed to be linear. Let the state variables x1=i, x2=x and x3=dx2/dt. From the

equivalent electrical/mechanical circuits, one can obtain the following state-space dynamical

equations;

(2.9)

(2.10)

(2.11)

(2.12)

The above equations can be discretized using the Euler approximation,

x1d
td

-------- 1
L0
------ Rx1– B0lx3– e B1lx2x3– B2lx2

2x3–+( )=

x2d
td

-------- x3=

x3d
td

-------- 1
m
---- B0lx1 αx2– rMx3– βx2

2– γx2
3– lB1x1x2 lB2x1x2

2+ +( )=

y t( ) x2 t( )=
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(2.13)

where T is the sampling period and x(n) is used to denote x(nT) for convenience. Thus, the follow-

ing difference equations are formed,

(2.14)

(2.15)

where u(n) is the system input and a11=1-TR/L0, a13=-T/B0/L0, a23=T, a31=TB0l/m, a32=-Tα/m,

a33=1-TrM/m, b1=T/L0, p11=-TB1/L0, p12=-TB2l/L0, p31=-Tβ/m, p32=-Tγ/m, p33=TB1l/m, and

p34=TB2/m. Knowledge of the associated loudspeaker parameters (suggested in [6]) yield for the

simulation:

(2.16)

(2.17)

dx
dt
------

t nT=

x n 1+( ) x n( )–
T

-------------------------------------=

x n 1+( )

a11 0 a13

0 1 a23

a31 a32 a33

x n( )
b1

0
0

u n( )+=

 
p11x2 n( )x3 n( ) p12x2

2 n( )x3 n( )+

0

p31x2
2 n( ) p32x2

3 n( ) p33x1 n( )x2 n( ) p34x1 n( )x2
2 n( )+ + +

+

y n( ) 0 1 0, ,( )Tx n( )=

x n 1+( )
0.1– 0 0.2–
0 1 1

0.6 0.5– 0.15–

x n( )
0.4
0
0

u n( )+=

 
0.04– x2 n( )x3 n( ) 0.05– x2

2 n( )x3 n( )+

0

0.08– x2
3 n( ) 0.01x1 n( )x2 n( ) 0.02x1 n( )x2

2 n( )+ +

+

y n( ) 0 1 0, ,( )Tx n( )=
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The sample period Τ is set to unity and β is set to zero since it is small in practice. Figure 2.3 illus-

trates the input and output signals obtained from the linear and nonlinear models using an input

test signal where . It is shown that the

nonlinear model exhibits soft-clipping at high excursion peaks. The corresponding impulse

response is illustrated in Figure 2.4.. 
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FIGURE 2.3   Comparison of the input signal e(t) with the linear model and nonlinear model 
outputs. The nonlinear model exhibits soft-clipping during amplitude peaks.

FIGURE 2.4   Nonlinear state-space model impulse response.
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2.3  Measurement of Nonlinear Parameters

Accurate determination of the nonlinear parameters usually requires that the cone displacement be

measured in synchronization with the applied coil voltages or currents. Laser displacement sys-

tems are typically required to achieve the accuracy. Once the displacement data is obtained, it may

then be applied to a general linear (see for example Ljung [5]) or nonlinear system identification

techniques [7] . The simplest method is to measure the lumped parameters as the voice coil is dis-

placed statically and then fit the coefficients of a power series via least squares curve fitting [8].

However, to determine stiffness and hysteresis, a dynamic method is required, where the applied

signal is a combination of continuous wave or swept-tone sinusoids. This method is sometimes

referred to as the harmonic input excitation method. An alternate method in [9] uses several gaus-

sian noise inputs with different root-mean-square (RMS) amplitudes. The advantage of dynamic

methods like harmonic excitation is that a simple microphone can be used to obtain frequencies

and relative amplitudes of the harmonic and distortion products. The coefficients of a power series

may then be obtained by a set of equations (See for example [8],[9],or [10]) for estimating the non-

linear parameters. Care must be taken however in removing any echo associated with the loud-

speaker-microphone measurement system, as discussed in [11].

2.4  Methods for Reducing Nonlinear Distortion

The reduction of loudspeaker distortion may be done using open-loop or closed-loop systems. An

open-loop system obtains the nonlinear parameters using one-time measurement techniques

described in Section 2.3 and then applies these values in a pre-distortion circuit. Examples of such

systems based on the Volterra series can be found in [12][13] and [14], however the later does not

compensate for loudspeaker hysteresis effects. A pre-distortion open-loop technique using the mir-
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ror filter is described in [15]. An open-loop compensation system using a Matlab® model devel-

oped from measured parameters is described in [16]. In [17] an inverse loudspeaker/room model is

developed using a Time Delay Neural Network to provide single point room equalization, but no

experimental measurements were presented.

A closed-loop system based on the correction of the displacement dependent force factor is

described in [18], however, this requires the use of a displacement transducer. Sometimes the loud-

speaker itself is used as the sensor for reasons of cost and the cone velocity is detected by a bridge

arrangement [19]. The method in [20] uses three operational amplifiers to detect voice coil current

to provide negative feedback. Another method based on providing acceleration feedback is

described in [21]. 

2.5  Summary

In this chapter, the nonlinear loudspeaker model is reviewed. A brief description of the electrome-

chanical model is presented and the corresponding differential equations describing the dynamics

of motion were introduced. A linear system block diagram shows that the loudspeaker is basically

a mass spring system. Next, a review of the primary sources of nonlinear distortion is presented,

concluding that the loudspeaker exhibits both temporal distortion (hysteresis) as well as amplitude

distortion generated mainly due to nonuniform flux density and suspension system nonlinearity.

Simulations based on linear/nonlinear state-space models show that at high signal levels, the loud-

speaker exhibits soft-clipping distortion. Finally, a brief literature summary of some techniques

available for measuring nonlinear loudspeaker parameters and reducing distortion is presented.
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Chapter 3
Review of Nonlinear Adaptive 
Filtering Techniques

This chapter furnishes the reader with the necessary background theory, techniques, algorithms

and structures related to this thesis. It starts with a brief survey of some nonlinear system identifi-

cation techniques and applications followed by a definition of terms and a quick review of linear

models. Subsequently, sections on the stochastic gradient, recursive least squares, and the conju-

gate gradient search techniques are presented. The chapter concludes with a discussion of the

adaptive nonlinear Volterra filter and the multilayer perceptron neural network.

3.1  Applications and a Survey

Linear adaptive filtering techniques are unable to benefit from higher order statistics of a nonlinear

process and therefore are limited in scope. For example, conventional linear adaptive filtering

algorithms are usually phase blind (Li, [22]) in the sense that they do not respond to phase infor-

mation contained in a signal in excess of a minimum phase characteristic. Linear models will also

fail miserably when trying to correlate two signals with non-overlapping spectral components

(Mathews [23]). In order to exploit the full information context of a signal, it is necessary to
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invoke nonlinear signal processing techniques. The process of identifying a signal can be viewed

as an “understanding” process or as a “learning” process. Understanding a process involves being

able to construct a relatively accurate model based on a-priori information, and state-space models

are generally of this class (Gershenfeld [24]). Learning a process on the other hand is more effec-

tive when there is little a-priori information about the underlying dynamics of a system, but the

available input/output information is plentiful. Thus, we can construct an ordered system from a

relatively unstructured initial model. Volterra filters and neural networks are two such “learning”

structures. 

The Volterra series expansion (Schetzen [25]) can model a large class of nonlinear systems and is

attractive in adaptive filtering applications because the expansion is a linear combination of non-

linear functions of the input signal. However, the Volterra filter belongs to a class of polynomial

filters which have a superlinear increase in the number of parameters for both increasing filter

order and polynomial order, and are therefore restricted to applications where the system order is

low. In the literature, Volterra filters have been applied to general nonlinear system identification

[26],[27],[28],[29], nonlinear echo cancellation for data hybrids [30],[31],[32], nonlinear noise

cancellation [33],[34], and estimation and compensation of loudspeaker distortion

[13],[14],[35],[36]. However, rarely does the discussion go beyond a 2nd order system. 

For compensation of loudspeaker nonlinearity, most distortion products are 3rd order and higher,

thus filter polynomial orders greater than three are required to effectively model the speaker trans-

fer function. However, when the loudspeaker output is convolved with a dispersive echo channel,

it very quickly leads to an unmanageably huge model. As a result, structures which are “less gen-

eral” are proposed in the literature. An example of a “weakened” Volterra filter is the cascaded lin-

ear-nonlinear-linear system described by Cowan and Adams [37], which consists of memoryless
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non-linearity sandwiched between two linear filters (See Figure 3.1). In [37], the nonlinearity

takes the form of a Taylor series expansion. Most signal processing problems can be reduced to

similar forms by isolating the known nonlinear component and then compensating for its nonlin-

earity by using a finite number of terms in the expansion. For example, one such system that can

be represented by Figure 3.1 is a general satellite communications channel with a nonlinearity

introduced by a TWT in the transponder (Namiki [38]). 

Neural networks offer an alternative method of dealing with high order system nonlinearities with-

out the “curse of dimensionality” associated with polynomial filters. One of the attractive features

of a neural network is its ability to adaptively learn subtle relationships from the data without

knowing the underlying process. As well, the network has the ability to generalize, i.e. being able

to respond correctly to input patterns not contained in the original training sequence. This is useful

in real-world applications where the data is often distorted and incomplete. In the literature, neural

networks filters have been used for general nonlinear system identification (Chen [39],[40]) pre-

diction of nonstationary nonlinear speech signals (Haykin [41]), equalization of high power ampli-

fiers in communications systems (Paolo et al. [42],[43]), speech enhancement and noise reduction

FIGURE 3.1   A weakened Volterra filter that consists of cascaded linear-nonlinear-linear
subsystems.
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in hearing aid systems (Knecht [44],[45]), and inverse filtering of loudspeaker-room acoustics

(Chang et al. [17]). Neural filters can be constructed by arranging the input into a tapped delay

line, an architecture first proposed by Waibel et al. [46]. It is possible to construct similar architec-

tures as shown in Figure 3.1 using a neuron as the memoryless nonlinearity. This form of neural

network is called a synaptic FIR neural network and requires the use of a temporal training algo-

rithm if the output error is used to train the network. The first temporal training algorithm for neu-

ral networks can be traced back to Wan [47]. 

FIR synaptic neural networks belong to a class of generalized feedforward (GF) structures, which

by definition can have either FIR or IIR filters between nonlinear nodes. GF structures employing

IIR synapses are called locally recurrent globally feedforward (LRGF) structures (Tsoi [48]). Back

and Tsoi [49] have shown that models based on local feedback have better convergence and stabil-

ity behavior than those based on global feedback. In addition to this, if the outputs are obtained

after the sigmoid activation function, the usual stability monitoring devices used in the linear IIR

case are not necessary due to the bounded outputs from the sigmoids. 

3.2  Regressors, Mappings and Definitions

The basic adaptive filter structure, be it linear or nonlinear, is illustrated in Figure 3.2 The adaptive

filter is assumed to be discrete in nature. In Figure 3.2 the output  of the adaptive filter is an

estimate of the desired signal  when applied with the input . A feedforward structure

ensures that the output  is a function of the input data only. A well known example of a

feedforward structure is the finite impulse response (FIR) filter. A recurrent structure on the other

hand will generate an output which is dependent on the input data as well as past values of the out-

put . Infinite impulse response (IIR) structures are recurrent.

y n( )

d n( ) x n( )

y n( ) x n( )

y n( )
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If we have observation inputs  and outputs  from a dynamical system;

( 3.1)

( 3.2)

we can state the general nonlinear relationship between past observations 

and future system outputs ;

( 3.3)

where  is a general nonlinear operator. The additive term  accounts for the fact that the

next output  will not be an exact function of the past data. If  is small, we may think of

 as a good prediction of , given past data.

The model structure of (3.3) has been found to be too general. It is more useful to construct the

nonlinear operator  as a concatenation of two mappings: one that takes the increasing number of

past observations  and past outputs and maps them to a finite dimen-

sional vector , and one that takes this vector to the output space via a nonlinearity. Hence,

the output estimate at time n is simply;

( 3.4)
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FIGURE 3.2  An adaptive filter.
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where,

( 3.5)

is called the regression vector, and its components are referred to as regressors, and the vector

 can be thought of as a weight vector operating on regression vector  with a length

equal to the choice of regression vector. The choice of nonlinear mapping in (3.4) is thus decom-

posed into two partial problems for dynamical systems:

1. Selection of the regression vector  from a finite value of past inputs and outputs.

2. Selection of the nonlinear mapping  from the regressor space to the output space.

Nonlinear mappings come in a variety of flavors including tensor products, radial basis functions,

fuzzy networks, sigmoidal neural networks and wavelets. The ones that are considered in this the-

sis are;

• Tensor Product: The regression vector is put into a state-expander, which maps the inputs to a

large number of outputs, depending on the size and order of nonlinearity desired. The Volterra

and Taylor series expansions are well known examples. 

• Sigmoid Functions: For the neural networks, a number of possible nonlinear mappings exist,

commonly referred to as activation functions. A well known mapping is the unit step function. 

An alternative to the sigmoid function is the hyperbolic tangent activation function, which can out-

put bipolar values between 1 and -1;

( 3.6)

where a is a slope parameter, usually set to one. Various combinations of linear and nonlinear

functions can also be constructed to obtain tailor-made activation functions (see for example [50]

and [51]).
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3.3  Linear Models

Multi-input single-output linear structures used in practice can all be summarized by the general

family (Ljung [7]);

( 3.7)

where,

( 3.8)

( 3.9)

( 3.10)

m is the number of exogenous inputs, z is the unit shift operator, and ,  have similar

forms to . The simplest linear dynamical model is the FIR model, sometimes referred to the

moving average (MA) model;

( 3.11)

The various models associated with (3.7) are basically variants of (3.11) using different ways of

picking up “poles” of the system and different ways of describing the noise characteristics. A list
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of the special cases of the general family is illustrated in Table 3.1.

The predictor associated with linear models can be given in pseudo-linear regression form as;

( 3.12)

The regressors typically associated with  for the systems studied in this thesis are;

•  (associated with the B-polynomial)

•  (associated with the A-polynomial)

Linear State-Space (SS) models can be described as a pseudo-linear regression by constructing a

transfer function from the state variables. For more details see Johns et al.[52]. 

The multi-input ARX model with two inputs is equivalent to the Equation-Error (EE) IIR formula-

tion. The ARMAX is a one of a family of more sophisticated EE model structures including ARARX

and ARARMAX which utilize additional filters for the error signal, however, since they involve a

greater number of coefficients they are not considered further.

TABLE 3.1  Special cases of the general linear model.

Name Acronym Polynomials
Moving Average MA A = C = G= F = 1
AutoRegressive AR F=C=G=1, B=0
AutoRegressive with eXogenous input. ARX F=C=G=1
Autoregressive Moving Average ARMA G = F = 1, B=0
Autoregressive Moving Average with eXogenous input ARMAX G = F = 1
AutoRegressive ARX ARARX C = F = 1
AutoRegressive ARMAX ARARMAX F=1
Output Error OE A = C = G= 1
Box-Jenkins BJ A=1

y n( ) wT n( )u n( )=

u n( )

x n k–( )

d n k–( )
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3.4  Search Methods and Algorithms

The weights in an adaptive filter are adjusted by an algorithm that minimizes some function of the

error  between the desired signal  and the filter output . A general form for filter

parameter adaptation, for minimization of the cost function J is stated below [53];

( 3.13)

where: 

w(n) and w(n+1) are the weight vector parameter estimates at time n and n+1

µ(n) is a bounded step size

 is a matrix obtained from input values that is used to improve the convergence rate1.

J is a function of the prediction error.

∇w (J) is the gradient of the cost function J with respect to the parameter w, defined as:

( 3.14)

Gradient Search Method. In the gradient search method J is the mean square error (MSE) cost

function defined as:

( 3.15)

where E is the statistical expectation operator and . It can be shown (see

Widrow [54]) that the optimum weight vector wopt minimizes J and can be obtained by solving the

Wiener-Hopf equation,

1.  Convergence rate is defined as the rate at which the MSE approaches the minimum value during the train-
ing phase of adaptation.
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( 3.16)

The corresponding minimum mean square error (MMSE) at wopt equals,

( 3.17)

Gradient based learning algorithms for FIR and IIR structures are presented in Section 3.4.1 and

Section 3.4.2.

Least Squares Search Method. The least squares search method minimizes the sum-squared error

(SSE) cost function; 

( 3.18)

where t1 and t2 refer to the index limits over which the cost function is obtained and λ is a forget-

ting factor, between 0 and 1. Recursive Least Squares (RLS) learning algorithms applicable to

AEC’s are presented in Section 3.4.3.

Conjugate Gradient Search Method. The conjugate gradient (CG) algorithm updates the tap

weights of a filter structure with new directions that are “non-interfering”, in other words, conju-

gate to each other. More importantly, the CG algorithm can be applied to both linear and nonlinear

systems as a method of obtaining improved convergence. The CG learning method is covered in

Section 3.4.4.
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3.4.1  Gradient Learning Algorithms for FIR Structures

The regression vector of an FIR structure contains only x inputs, hence we define;

( 3.19)

( 3.20)

By replacing the expectation operator in the true gradient expression in (3.14) with an approxima-

tion based on the instantaneous error, the gradient now becomes;

( 3.21)

Substitution of (3.21) into (3.13) we obtain the general form of the accelerated steepest descent

algorithm [53].

( 3.22)

The factor of 2 in (3.21) has been absorbed into the step size value µ(n). The matrix  is cho-

sen based on some a priori knowledge to improve the convergence.

LMS Algorithm . If  is selected as the identity matrix, and the step size is fixed in the gen-

eral formula given in (3.22), then we obtain the least-mean-square (LMS) algorithm. The LMS fil-

ter is stochastic in that it provides an approximation to the Weiner filter as it converges [54]. The

tap weight update formula for the LMS algorithm is;
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( 3.23)

The complete algorithm is described in Appendix D.1.

Normalized LMS (NLMS) algorithm. In the NLMS algorithm, the step size is normalized by the

Euclidean norm of the input vector x(n). This algorithm is appropriate when the input power is

unknown or highly variable and is a benchmark standard for AEC applications. The complete

algorithm is described in Appendix D.2.

Variable Step Size (VSS) algorithm. Variable step size (VSS) LMS-based algorithms use a large

step size when the filter parameters are far from the optimum to achieve fast convergence, and a

small step size when the weights are close to the optimum. The VSS algorithm used in this thesis is

the Modified VSS algorithm (MVSS) as described by Mayyas [55]. The advantage of the MVSS

algorithm over the standard VSS algorithm described in [56] is its relative insensitivity to noisy

signals due to the time average autocorrelation process. The complete algorithm is listed in Appen-

dix D.3.

3.4.2  Gradient Learning Algorithms for IIR Structures

There is a rich body of literature on IIR structures that includes direct form [53],[57],[58], lattice

form [59], parallel [60], and cascaded [61] structures. Fundamentally there have been two

approaches to adaptive IIR filtering that correspond to different formulations of the prediction

error. The two forms are equation error (EE) and output error (OE) methods. 

The difference between the OE and EE IIR structures in a system identification context is illus-

trated in Figure 3.3. Each method has its own advantages and disadvantages. The EE model gives

rise to a unimodal error surface with easy stability monitoring, but when the plant signal is con-

w n 1+( ) w n( ) µe n( )x n( )+=
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taminated with noise , the resulting parameter estimates are biased away from the optimum val-

ues which give the MMSE [62]. The OE has no such bias, however the error surface is multimodal

and stability monitoring is non-trivial. As a result, the parameter estimates may converge to a local

minimum and not necessarily the global minimum. Various methods exist which combine the ben-

eficial properties of the OE and EE methods to provide composite algorithms. These methods are

generally referred to composite error surface (CES) methods. A good example of a CES is the

Steiglitz-McBride Method (SMM) [63]. Other examples of CES methods include the composite

regressor algorithm (CRA) [64] and the composite gradient algorithm [65]. Still other methods

exist for removing the bias associated with the EE method altogether [66], however, these are con-

sidered beyond the scope of this thesis.

Equation Error Formulation . The EE formulation is characterized by the multi-input nonrecur-

sive ARX difference equation with two inputs:
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( 3.24)

Note that the output depends only on the two inputs x(n) and d(n), consequently the weights

can be updated using well understood LMS type algorithms. The complete algorithm for the EE-

IIR structure is listed in Appendix D.6.

Output Error Formulation: The OE formulation can be described using the recursive difference

equation:

( 3.25)

Notice that the output is now dependent on previous outputs . The OE-IIR algorithm and

derivation of the update equations using the simplified gradient is listed in Appendix D.7.

3.4.3  Recursive Least Squares Learning Algorithms

Exponential Recursive Least-Square (RLS) Algorithm . In the general parameter update equation

(3.13), if P approximates R-1, where R is the true autocorrelation matrix of the input vector x(n),

defined by;

( 3.26)

and the step size parameter µ(n) is replaced by;

( 3.27)
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( 3.28)

is a measure of the signal input power, with a normalization introduced by P(n-1), then the conver-

gence time of the algorithm can be reduced substantially even in cases of high eigenvalue spread.

This is the basis for the RLS algorithm (λ=1) which is a special case of the Kalman filter. The for-

getting factor λ reduces the effects of past data over time and therefore improves the ability of the

algorithm to track variations in the statistics of the input data. However, this imposes a stability

limit on the minimum value of λ. The RLS algorithm for an FIR structure is described further in

Appendix D.3. Note that the RLS update may also be applied to the OE-IIR structure as is

described in Appendix D.4.

The important property of the RLS algorithm is its fast convergence. When the input is time-

invariant, the MSE in the RLS algorithm converges in about 2M iterations where M is the filter

order. The RLS algorithm demands a high computational load compared to the LMS algorithm,

requiring O(M2) multiply-adds for each update, and therefore “fast” versions of the RLS (i.e. com-

putationally efficient) have been implemented, as discussed below. 

Fast Transversal Filter (FTF) algorithm. The FTF algorithm takes advantage of the redundan-

cies in the standard RLS algorithm to bring the computational load down to O(7M) operations per

iteration update. The FTF algorithm suffers from numerical precision problems and is generally

viewed as unstable. A method of stabilizing the algorithm, known as the Stabilized Fast Transver-

sal Filter (SFTF) mitigates the problem but increases the complexity from O(7M) to O(8M) opera-

tions per iteration. A method of improving the tracking capability of the SFTF is by the use of a

time varying acceleration factor  which effectively modifies the time constants of the algo-

rithm such that the effective forgetting factor λeff varies between λ (when ρ=0) and 0 (when ρ =1).

q n( ) λ 1– xT n( )P n 1–( )x n( )=

η n( )
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The accelerated SFTF algorithm used in this thesis was proposed in [67] and [68] and is described

further in Appendix D.5.

3.4.4  Conjugate Gradient Learning Algorithms

The conjugate gradient algorithm is obtained by iteratively constructing successive direction vec-

tors that are mutually conjugate and linearly independent as the method progresses (Hestenes

[69]). Thus, the directions are determined sequentially at each step of the iteration. At step k, one

evaluates the current negative gradient vector and adds to it a linear combination of the previous

direction vectors to obtain a new conjugate direction vector along which to move. 

The CG algorithm has convergence properties that will minimize a quadratic function f(x) of m

variables (i.e weights) in no more than m iterations and provide fast convergence. The function f(x)

is defined as 

( 3.29)

where x is of size m and Q is of size . The approach in the conjugate direction method is to

obtain a set of linearly independent direction vectors which are conjugate with

respect to Q such that equation (3.29) is minimized. The solution is obtained when

, i.e.,

( 3.30)

The vectors  are said to be Q-conjugate if 

( 3.31)

f x( ) 1
2
---xTQx bTx–=

m m×

d0 d1 … dm 1–, , ,

g Q= x b– 0=

Qxopt b=

d0 d1 … dm 1–, , ,

di
TQdj 0,= i j≠
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Conjugate Direction Coefficients αk. The optimum solution vector xopt minimizes (3.30) where

xopt can be expressed as;

( 3.32)

and the constants are given by (Luenberger [70]);

( 3.33)

where . The conjugate gradient algorithm determines the appropriate orthogonal set

of direction vectors and constants αk iteratively and generates a new xk according to;

( 3.34)

If the direction vectors dk are mutually conjugate and linearly independent, then the initial guess x

will converge to the optimum xopt after m steps, that is xm= xopt. 

Conjugate Direction Vectors dk. The initial direction vector is chosen as the negative gradient at

the initial point: . Successive directions are obtained from a linear combination of the

current gradient and the previous direction;

( 3.35)

Given that successive directions must be Q conjugate, i.e.;

( 3.36)

gives the update equation for βk as

xopt α0d0 α1d1 … αm 1– dm 1–+ + +=

αk
gk

Tdk

dk
TQdk

-----------------–=

gk Q= xk b–

xk 1+ xk αkdk+=

d0 g0–=

dk 1+ g– k 1+ βkdk+=

dk 1+
T Qdk g– k 1+ βkdk+[ ]TQdk 0= =
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( 3.37)

Extension to Nonquadratic Problems. The quadratic approximation method extends the CG

algorithm to general nonlinear functions by interpreting (3.29) as a second order Taylor series

expansion of the objective function. For details the reader is referred to papers by Johansson et al.

[71], Charalambous [72], and Boray and Srinath [73]. Essentially, the following associations are

made at x;

( 3.38)

 is the m × m Hessian matrix of the function at xk, and gk is the m × 1

gradient of the function at xk. 

Since the calculation of the hessian F of a matrix is O(m3) complexity [74], avoiding the calcula-

tion of F would be advantageous for large order systems. It can be shown (see [73] and p. 138

[69]) that  where  is the gradient at .

Hence, the update equation for the direction constants can be given by

( 3.39)

In addition, Q may be eliminated from the expression for βk to yield [71];

( 3.40)

The first expression is the Hestenes-Stiefel formula for βk and the second and third expressions are

βk
gk 1+

T Qdk

dk
TQdk

------------------------=

gk f xk( )∇↔ Q F xk( )↔

Fk xk( ) ∇2f wk n( )( )=

Qdk Qgk– pk gk–= = pk ∇f yk( )T= yk xk gk–=

αk
gk

Tdk

dk
TQdk

-----------------–=
gk

Tdk

dk
T pk gk–( )

----------------------------–=
gk

Tdk

dk
T gk pk–( )

----------------------------=

βk
gk 1+

T gk 1+ gk–[ ]

dk
T gk 1+ gk–[ ]

------------------------------------------
gk 1+

T gk 1+ gk–[ ]

gk
Tgk

------------------------------------------
gk 1+

T gk 1+

gk
Tgk

--------------------------= = =
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referred to as the Polak-Ribiere and Fletcher-Reeves formulas respectively. 

Using the above expressions, we may obtain a recursive formulae for computing successive αk and

βk that do not require the computation of F. However, the method is based on the Taylor approxi-

mation of a general nonlinear function and the Q-conjugacy of the direction vectors will deterio-

rate as the method proceeds. Hence, it is common practise to reinitialize dk to gk at every nth

iteration.

Partial Conjugate Gradient Method. The partial conjugate gradient method carries out the conju-

gate gradient procedure for k<m-1 steps [70]. The special case of k=0 corresponds to the standard

method of steepest descent, while k=m-1 corresponds to the full conjugate gradient method. Thus,

choosing k<m results in reduced complexity. If equations (3.39) and (3.40) are used to compute the

optimum direction and step size, we do not need to compute the Hessian F. The penalty is that two

gradient calculations must be performed per iteration, one at the current value of the vector xk and

one at yk. However, since the computation of the Hessian matrix is of order O(m3) and the calcula-

tion of a single gradient is of order O(m2), the savings are substantial if the filter order m is large

and if k<m. 

We now replace the dependent variable xk given above with a set of weights wk(n) we obtain the

following algorithm, which is based on the method of Partial CG, that does not require the use of a

line search or the calculation of the Hessian matrix. Given an initial weight estimate  of length

m, the CG algorithm generates the sequence of new weights  for the network

 using the following scheme. Note that n refers to the time index and k refers to

the conjugate direction count in the sequel.

w0

w1 w2 …, ,

ϕ u n( ) w n( ),( )
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Conjugate Gradient Algorithm: 

Initialization: w0(0)=0
For each iteration n, do steps 1,2 and 3.

Step 1. a) Starting with an initial weight vector w0(n) compute the following;

( 3.41)

( 3.42)

( 3.43)

b) set 

Step 2. Repeat for k=0,1,. . . ,m-1

a) set  where αk is the optimum step size;

( 3.44)

b) Compute the gradients at the new weight vector wk+1

 ( 3.45)

( 3.46)

( 3.47)

(c) Unless k=m-1, obtain the new direction vector
 ; ( 3.48)

g0 n( ) ∇f w0 n( )( )[ ]T=

y0 n( ) w0 n( ) g0– n( )=

p0 n( ) ∇f y0 n( )( )[ ]T=

d0 n( ) g0 n( )=

wk 1+ n( ) wk n( ) αkdk n( )+=

αk
gk

T n( )dk n( )

dk
T n( ) gk n( ) pk n( )–( )

-----------------------------------------------------=

gk 1+ n( ) ∇f wk 1+ n( )( )[ ]T=

yk 1+ n( ) wk 1+ n( ) gk 1+– n( )=

pk 1+ n( ) ∇f yk 1+ n( )( )[ ]T=

dk 1+ n( ) g– k 1+ n( ) βkdk n( )+=
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where ( 3.49)

and repeat Step 2 (a).

Step 3. Replace w0(n) by wm(n) and go back to Step 1

βk gives a measure of the rate of change of successive gradients. If βk > 1, then the magnitude of a

successive gradient vector is not decreasing, meaning that the minimum has been reached. βk > 1

is a termination condition for conjugate direction k in Step 2). The calculation of βk is done accord-

ing to the Fletcher-Reeves method rather than the Polak-Ribiere method [70] since it tends to give

a smoother convergence. 

The CG algorithm can be computationally expensive if real time processing is required, thus sim-

plification techniques exist which can reduce the complexity substantially. This is covered in more

detail in Chapter 6.

3.5  Nonlinear Models

In the nonlinear domain, . Following the nomenclature for the linear models, it is natural to

coin similar names for nonlinear models, for example [75];

• NFIR-models, which use only  as regressors. Examples include Volterra filters and

feedforward neural networks. These are covered in Section 3.6 and Section 3.7.

• NARX-models, which use  and  as regressors. Narendra and Parthasarathy

[76] present a NARX neural network which they refer to as a series-parallel model. A method of

selecting the parameters in a neural network NARX model is given by Urbani [77] .

βk
gk 1+

T n( )gk 1+ n( )

gk
T n( )gk n( )

------------------------------------------=

ϕ 1≠

x n k–( )

x n k–( ) d n k–( )
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• NOE-models. For example, Narendra and Parthasarathy [76] present a NOE neural network

which they refer to as a parallel model. 

• NARMAX-models. For example Chen and Billings [78] present a general paper on nonlinear

identification using the NARMAX model. Jang and Kim [9] present a NARMAX specifically for

identifying a nonlinear loudspeaker. 

• Nonlinear State-Space (NSS) models, that use past components of virtual outputs, i.e. signal

values at internal nodes of the network that do not correspond to the output variable. For exam-

ples see Gao, [79] and [80].

The adaptive bilinear structure [23] [81] can be considered as an NOE or NARX model depending

on whether the inputs include  or . Despite its simplicity, the bilinear model is an

important nonlinear model since it can be shown (Mohler [82]) that a large class of nonlinear sys-

tems can be approximated with arbitrary precision using truncated bilinear system models. How-

ever, like the EE method, it produces a biased MMSE if  is noisy.

Next, a brief review of the Volterra filter and neural network filter structures is presented.

3.6  The Volterra Filter

The Volterra filter is a general nonlinear feedforward structure that has been successfully applied

to identifying low order nonlinear systems. The Volterra filter is a polynomial structure with an

output that results from a summation of homogenous systems each with consecutive degrees. A

homogenous system of degree k yields an output akyk(n) for an input ax(n) where yk(n) is the

response to x(n). The output y(n) of a nonlinear process can be approximated by a truncated Volt-

erra series;

y n( ) d n( )

d n( )
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( 3.50)

where  denote the so called p-th order Volterra kernels of the system and

 represent the orders of the nonlinear sections. For the purposes of this discussion, we

have dropped the time dependence on n. We will also assume that the kernels

 are symmetric, i.e. that the indexes are

exchangeable. Define the p-th order Volterra kernel vectors and p-th order input space regression

vectors at time n;

( 3.51)

( 3.52)

where ⊗ is the Kronecker product of vectors and it is assumed that the duplicate terms have been

removed. We may rewrite (3.50) as a vector product of an extended weight vector and regressor;

( 3.53)

where 

( 3.54)

( 3.55)

y n( ) h0 h1 m1( )x n m1–( )

m1 0=
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m2 0=
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∑
m1 0=
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∑ …+ + +=

+  
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N1

∑ … hp m1 m2 … mp, , ,( )x n m1–( )x n m2–( )…x n mp–( )

mk 0=

Np

∑

hp m1 m2 … mp, , ,( )

N1 … Np, ,

h2 m1 m2,( ) h3 m1 m2 m3, ,( ) … hk m1 m2 … mk, , ,( ), , ,

hp n( ) hp m1 m1 … m1, , ,( ) hp m1 m1 … m2, , ,( ) … hp mp mp … mp, , ,( ), , ,[ ]T=

xp n( ) x1 n( ) xp 1– n( )⊗=
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We can see from (3.53) that the first term is the DC component of the output, and the subsequent

terms are the linear, quadratic, cubic, up to the p-th order polynomial components of the output

respectively, and that for p=1, we obtain the linear FIR filter. The structure is illustrated in Figure

3.4.

FIGURE 3.4  An adaptive Volterra filter structure consists of a number of homogenous systems
operating on extended input vectors. The extended inputs are calculated using the tensor product
nonlinear mapping strategy.
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3.6.1  Performance Surfaces

There is a super-linear increase in the eigenvalue spread of the performance surface for nonlinear

models, which limits the convergence when gradient search techniques are used to update the tap

weights. RLS versions of the Volterra algorithm can be used to mitigate this problem (See for

example Mathews [23]), however, for large filter orders the complexity is prohibitive. Figure 3.5

(a) and (b) show the structure of a linear and nonlinear filter, each consisting of two taps. The per-

formance surfaces for the two models are plotted in Figure 3.6.

FIGURE 3.5  (a) Linear filter with two weights. (b) Nonlinear filter with two weights.
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FIGURE 3.6 Error performance surface (a) Linear model. (b) Nonlinear model has elliptical 
performance surface. 
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The unknown system to be identified has the same structure, with optimum weights chosen as

w1=1, w2=2. It can be seen from the results that the performance surface for the nonlinear model

has an elongated bowl shape, which will result in an increased eigenvalue spread. For filtered or

coloured inputs, this elongation of the performance surface becomes more acute.

3.6.2  Adaptive Learning Algorithm

Analogous to linear filter theory, the optimum coefficients solve the extended Wiener-Hopf equa-

tions:

( 3.56)

The corresponding LMS adaptive updating of the p-th order coefficients is performed according to

the following equations;

( 3.57)

where µp is the step size for the p-th power term. The corresponding Volterra minimum MSE can

be computed from;

( 3.58)

which includes the linear MMSE in the case p=1. A summary of the LMS-Volterra algorithm is

given in Appendix D.8.

The advantages of using the Volterra filter is that linear adaptive filter theory can be applied to the

extended vectors for on-line adaptation. As well, the MSE surface space does not contain any local

minima, because the filter output depends linearly on the extended coefficients. However, the dis-

advantages are that the dimension of the extended input vector xe(n) becomes very large for larger

E xe n( )xe
T n( )[ ]he n( ) E d n( )xe n( )[ ]=

hp n 1+( ) hp n( ) µpe n( )xp n( )+=

εmin E d2 n( )[ ] E d n( )xe n( )[ ]TE xe n( )xe
T n( )[ ]

1–
E d n( )xe n( )[ ]–=
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filter orders, and thus slows the convergence time. The dimension of the extended vector xe(n) can

be calculated from the following formula;

( 3.59)

For example, a 3rd order Volterra system with  will have 23,425 elements

in he(n), and this assumes that combinations such as h2(2,3) and h2(3,2) are counted as one value!

With this in mind, it is important to weed out as many non-essential terms as possible, in order to

simplify the structure. 

IIR and higher order systems. Several new methods have recently been proposed to model gen-

eral higher order systems using lower order subsystems. For example, a parallel cascaded trun-

cated Volterra system has been proposed in [83] as a method to combine lower order systems to

approximate a much higher order Volterra system. Also, a recent paper [84] presents a second

order Volterra infinite impulse response (IIR) structure for modelling sinusoidal harmonics, how-

ever, when applied to real-world data consisting of engine and vibration signals, the net gains were

marginal compared to the second order Volterra finite impulse response (FIR) structure. 

Stability and Convergence. It can be shown in linear adaptive theory that the values of the coeffi-

cients converge if the step sizes are chosen such that  where  is the max-

imum eigenvalue of the autocorrelation matrix of the extended input vector xe(n). The problem for

nonlinear filtering is that the eigenvalues spreads are in general very large. Even when the input

signal is white, the presence of nonlinearities in the input vector will cause the eigenvalue spread

to be more than one. Consequently, algorithms and structures that have convergence behaviors that

are independent of (or less dependent on) the statistics of the input signal are often used. It is pos-

dim xe( ) dim he( ) Nl l 1–+
l⎝ ⎠

⎛ ⎞

l 0=

p

∑= =

N1 N2 N3 50= = =

µp 0 µp 2 λmax⁄< < λmax
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sible to apply the RLS update operator to the extended weights (Mathews [23]), however there is a

corresponding increase in complexity. An alternate method for improving the convergence rate

using the LMS update is the variable step size algorithm for Volterra filters, proposed by Sicuranza

[85].

3.7  Multilayer Perceptron Neural Networks

A multilayer perceptron (MLP) neural network can solve certain complex problems more accu-

rately than linear techniques if the underlying physical mechanism responsible for the process out-

put is inherently nonlinear. Neural networks may also be more applicable than polynomial filters

to real-life systems since rarely in nature does the output of a nonlinear system increase without

bound for increasing inputs. Most physical systems will exhibit some form of clipping or limiting

before this happens. 

The neuron constructs a nonlinear mapping from the regression space to the output space via a

nonlinear activation function. There are an infinite number of possible candidate activation func-

tions, however, the most widely used are the linear model, the McCullough-Pitts model character-

ized by a threshold function, the piece-wise linear model, characterized by a linear function which

is clipped beyond a defined linear range, and the sigmoid function.

Consider a multilayer feedforward neural network filter as shown in Figure 3.7. The activation

level at the input to the sigmoidal nonlinearity of neuron j in layer l+1 is;

( 3.60)

where represents the output from the previous layer and is the input to weight elements

sj
l 1+( ) n( ) wij

l( ) n( )xi
l( ) n( )

i 0=

Nl

∑=

xi
l( ) n( )
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at time n and Nl is the number of nodes in layer l. The output of node j in layer l is;

( 3.61)

where ϕ represents the nonlinear activation function. The MLP output for node j in the output

layer is 

( 3.62)

3.7.1  Backpropagation Learning Algorithm

The basic mechanism behind supervised learning rules is to update the network weights and bias

terms until the MSE between the network output y and desired target signal d is minimized to

below a predetermined level. The backpropagation (BP) algorithm [86] is a supervised learning

algorithm based on propagating errors through to hidden nodes using an instantaneous gradient
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estimate. For the on-line training mode, the instantaneous cost function Jinst at time n is defined as;

( 3.63)

where;

( 3.64)

is the error signal at time n and yi(n) and di(n) represent the output and desired signals respectively

for the output of a neuron i.  for a network with a single output. The backpropagation

algorithm attempts to minimize the  by the delta rule [87]for the vector w by incrementing at

each step toward the optimum vector using the negative gradient at that point;

( 3.65)

where  is a fixed step size and w is a vector consisting of all the weights in the network

( 3.66)

Details of the derivation of the BP algorithm can be found in Pao [88] or Haykin [87]. The com-

plete update algorithm can be expressed as follows;

( 3.67)

( 3.68)
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where; 

represents the output from node i in layer l,

represents the weight connecting node i in layer l to node j in layer l+1

represents the input activation to node j in layer l

( ) represents the derivative of the sigmoid function 

represents the local gradient “delta” term of node k in layer l. 

L is the total number of layers in the network

n is the time index

µ is the step size parameter

The backpropagation terms are illustrated in Figure 3.8.
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3.7.2  Enhanced Backpropagation Methods

One of the simplest and most popular methods for enhancing the speed of convergence of the BP

method is to apply momentum [86] to the weight updates according to,

( 3.69)

where  is called the momentum constant. Essentially, a small amount of the previous

weight value is added to the current weight update. This has the effect of stabilizing oscillating

weight updates and accelerating weight updates which have the same sign [89].

The Kalman algorithm may be applied to neural networks to improve convergence rates in the

same way that the RLS can speed up convergence rates for FIR based structures. The Enhanced

Backpropagation (EBP) method [90][91] divides the MLP into a number of linear subsystems for

each layer and invokes the RLS (or linear Kalman filter algorithm) to update the weights so as to

minimize the error in each layer with respect to the activation potential into each neuron. All neu-

rons in the same layer have the same input vector x(n) and only one P matrix per layer is required.

The Extended Kalman Algorithm (EKA) on the other hand divides the MLP into a number of non-

linear subsystems and minimizes the error at the neuron output [91][92][93]. The activation func-

tion output is linearized by using a Taylor series expansion about the current weight estimate. Each

neuron perceives its own “linearized” input and therefore must also maintain its own copy of P

even if the input x(n) is shared with other neurons. This leads to higher computational and storage

cost [94] compared to the EBP algorithm, but also provides superior performance [91].

Enhanced BP methods are attractive for enhancing convergence in certain classification problems

and for inputs that have a large eigenvalue spread. In the linear domain, RLS algorithms have
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poorer tracking ability than algorithms based on instantaneous gradient estimates (for example

LMS), when operating in low SNR conditions [95]. The fact that the RLS algorithm is used to

train the weights may cause poorer tracking ability than the conventional BP algorithm, however,

the author could find no results presented in the literature to confirm this hypothesis. It may also be

possible to enhance EKA based algorithms with an acceleration factor similar to the one used in

the accelerated SFTF algorithm used on linear FIR structures.

3.8  Summary

In this chapter, the principles and adaptation techniques of linear and nonlinear adaptive filters

were reviewed. A brief survey of the research work in this area and some applications were pre-

sented. Following a discussion of the adaptive FIR and IIR filter, the gradient based search tech-

nique was presented including the LMS, NLMS, MVSS algorithms, as well as the EE-IIR and OE-

IIR LMS variations for IIR filters. The least squares search techniques presented included the

exponential RLS and SFTF algorithms, including the RLS update as applied to the OE-IIR filter.

The third search technique presented was the conjugate gradient algorithm. The theory of Volterra

filters and the LMS based training technique were next covered, followed by neural network filters

and the celebrated gradient backpropagation algorithm. 
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Chapter 4
Acoustic Echo Cancellation

This chapter contains six major subsections. Section 4.1 introduces the acoustic echo control prob-

lem in HFT’s and presents performance requirements. Section 4.2 presents the physical test system

used to obtain the field data, including precautions taken to prevent impaired measurements. Sec-

tion 4.3 investigates the use of IIR for AEC’s. Section 4.4 investigates the performance limitations

of AEC’s including both physical and algorithmic factors, with supporting analysis, simulations

and experimental test results. Section 4.5 presents results on the effects of enclosure vibrations and

rattling with a typical HFT. Section 4.6 determines how transducer nonlinearities affect the perfor-

mance of linear algorithms, and finally a summary is presented in Section 4.7.

4.1  The Handsfree Telephone Problem

The basic objective of a handsfree AEC is to provide ease of communications for conversational

purposes by allowing the user to move about freely in his or her environment without any loss in

speech quality. However, acoustical feedback and echoes are major sources of annoyance in con-

versations using HFT’s, hence a method of controlling echo is needed. Figure 4.1 shows a hands-
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free telephone set intended for full-duplex operation. The microphone or primary signal, is a

summation of the received echo, room noise and near end speech signal. The HFT contains two

echo control devices. The first is a hybrid echo canceller which removes echoes that leak through

the imperfect 2-to-4 wire hybrid coupler, as well as reflections from the line. The second is an

acoustic echo canceller which removes part or all of the acoustic signal coming from the loud-

speaker, including echoes from the environment. Hybrid echo characteristics can change from call

to call, and acoustic echo characteristics are affected by any movements within the immediate sur-

roundings, hence it is necessary to implement adaptive filter to cancel the echoes. However, the

task of acoustic echo cancellation is a far more difficult task than hybrid echo cancellation for the

following reasons:

• The hybrid echo characteristics are typically stationary on a per-call basis, whereas the acoustic

echo path is affected by any movements within its surroundings. This means that dynamic

tracking is extremely important in AEC’s.

• The acoustic echo duration is far greater than the hybrid echo duration, typically by an order of

magnitude, possibly up to a few hundred milliseconds in large rooms. This means that filter

structures with a long memory (i.e. filter order) are required in AEC applications.

• The hybrid is well modelled by a linear system whereas the acoustic path has at least one non-

linear component (the loudspeaker), as well as other components that are difficult to model, for

example air turbulence in the vicinity of the microphone and vibration and resonances within

the HFT enclosure.

• The magnitude of the coupling between the loudspeaker and microphone is significant and

results from a direct path through the air and the enclosure itself. The desired speaker signal is

usually much smaller in magnitude than the signal to be cancelled. In hybrid echo cancellation,

this large acoustical coupling is absent.

• The magnitude of the background noise in a room can be significant, whereas in hybrid sys-

tems, the noise level is usually much less severe.
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The effects of the above differences limit the performance of acoustic echo cancellers compared to

hybrid echo cancellers. Typically, 70 dB of echo cancellation can be achieved in practice for

hybrids [96] whereas 25 dB seems to be the current practical limit to the achievable acoustic echo

cancellation [1][95][97][98]. To be commercially attractive and audibly nonintrusive, HFT’s

should achieve echo cancellation levels of at least 30 dB in times of less than 100 ms 1 with voice

signals using reasonably priced digital signal processors (DSPs). The state-of-the-art in AEC’s for

handsfree terminals cannot yet reach this goal and as a result it has been a hotbed of on-going

research for many years. A complete background survey in this area is beyond the scope of this

chapter, however, references [99], [100] and [101] provide an exhaustive summary of over 100

technical papers.

1.  Internal correspondence with Nortel.
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4.1.1  Performance Requirements

Objective Requirements. A commonly used AEC performance metric is the steady-state Echo

Return Loss Enhancement (ERLE) during single talk mode, i.e. when the near end speech is

absent, and is defined by [102];

( 4.1)

where σ2
p and σ2

e refer to the variances of the primary and error signals respectively and E is the

statistical expectation operator. For on-line measurements, the later expression in (4.1) is used to

compute the ERLE at time n where nw is the size of the window average, nominally set to 500. 

The ERLE value provides a measure of how much the echo is attenuated in the absence of mea-

surement noise, however, the value obtained from (4.1) includes the effects of both the acoustical

isolation between the loudspeaker and microphone, and the electrical modelling accuracy. For

example, an infinite ERLE can be obtained with either a perfect electrical model in the AEC por-

tion or 100% acoustic isolation between the loudspeaker and microphone. Generally, the physical

ERLE value recorded is a combination of the two mechanisms. In addition, a large uncorrelated

noise component in the primary signal will also affect the ERLE value so some caution should

used when using ERLE as the primary objective measure of modelling performance. Objective

performance standards may be found in [103] through [108] which are summarized as follows;
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The attainable early-to-late ratio1 (ELR) is another objective performance measure which is

defined as the ratio of energy received before 40 ms to that received after. A high ELR is subjec-

tively more pleasing than a low ELR.

Subjective Requirements. Very little work has been done to correlate objective criteria and subjec-

tive test results with regard to acoustic echo control [109]. Quantities such as naturalness of trans-

mitted speech and quality of conversation with regard to ease of speaking and interruption are not

well defined in the literature, although these are most important to the user. The echo cancellation

level subjectively required for HFT’s depends highly on the environment. For example, in [110] an

assessment is performed in audio teleconferencing environments, where for an overall round trip

delay time of 100 ms and a reverberation time of 400 ms, 40 dB of acoustic echo cancellation is

considered necessary. Experiments on the minimum detectable delay of speech (assuming a single

TABLE 4.1   Objective performance requirements for handsfree telephones.

Quantity Description Value
TIC Initial convergence time 1 sec, 20 dB
TRDT Recovery time after double talk 1 sec, 20 dB
TCLWPV Echo loss during echo path variation >10 dB 
TRPV Recovery time after echo path variation 1 sec, 20 dB
TCLWST Echo loss in single talk >45 dB
TCLWDT Echo loss in double talk mode >25 dB
ARDT Received speech attenuation in double talk mode >6 dB
ARST Transmitted speech attenuation in double talk mode >6 dB
DRST Received speech distortion in double talk mode currently under study
DRDT Transmitted speech distortion in double talk mode currently under study
TONST Break-in time in single talk mode 20 ms, 3 dB
TONDT Break-in time in double talk mode 20 ms, 6 dB

1.  Performance metric at Nortel.
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echo) confirm that 23 ms seems to be the detectable limit [111] and that human sensitivity to the

echo signal increases as the delay between the original and echo signal increases. Mean opinion

scores on speech signals also degrade with increased echo delay (i.e. lower ELR). Experimental

results in [109] show that the annoyance due to acoustic echo level is strongly dependent of the

background noise level, and that the annoyance of the background noise subjectively masks the

echo. Additional results presented in [112] for automobile interiors show that echoes are attenu-

ated approximately 1 dB for every 1 ms of delay which means that by the time the echo is perceiv-

able, it has already become attenuated by at least 20 dB. It would appear that given this

information, the AEC problem (in automobiles) is of secondary importance with respect to noise

cancellation. In the context of improving the subjective quality of HFT’s, both speech enhance-

ment (i.e. noise and distortion reduction) and echo cancellation should therefore be taken into

account for obtaining an overall quality enhancement. However, where noise reduction can be

achieved with linear systems, distortion reduction usually requires a nonlinear architecture.

Implications for HFT Design. High figures of ERLE up to 45 dB are often proposed in the case of

large transmission delays (See Table 4.1) however, since current technology/algorithms are gener-

ally unable to provide such high attenuation, additional variable losses in the receive and/or trans-

mit path are frequently used. More importantly, there seems to be no mention of how physical

limitations such as loudspeaker nonlinearity will affect the practical achievement of such high

ERLE values without the inclusion of additional losses. In terms of achieving both a subjectively

pleasing speech quality and the specifications listed in Table 4.1 it would appear necessary to

accommodate the nonlinearity of the loudspeaker model into the AEC design.
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4.1.2  Acoustic Reverberation in Rooms

In this section we investigate the characteristics of acoustic reverberation in rooms, and how it

impacts on the architecture of AEC’s.

Reverberation Time. The reverberation time T60 is defined as the length of time necessary for all

reflections in a room to decay by 60 dB [113];

 ( 4.1)

where δ is the average damping constant of all surfaces in the room, c ≈ 340 ms is the speed of

sound in air and Lx, Ly, Lz are the x,y,z room dimensions1. β is the reflection coefficient varying

between 0-1. More importantly, β has a frequency dependence; generally low frequencies have a

higher reflection coefficient than higher frequencies for most reflecting surfaces. Values of T60 can

range from 0.3s (living rooms and furnished conference rooms) up to 10s (large churches). For an

AEC in a typical conference room operating with a sample rate of 8kHz, this means that (in the

absence of other limitations) up to several thousand taps are required to obtain 40-60 dB echo can-

cellation.

Vibrational Modes. In a rectangular room, the number of vibrational modes N in the frequency

range from 0 to f is given by [113];

( 4.2)

where V is the volume of the room, S is the area of all walls, L the sum of all edge lengths of the

walls of the rectangular room. For example: for a room with dimensions Lx=3m, Ly=4m and

1.  Equation (4.1) is intended for regularly shaped rooms free of furniture and people.
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Lz=5m, the number of eigenfrequencies1 in the range [0, 3.4 kHz] is 247787. Since this number

represents half the number of poles necessary to completely model the physical phenomenon

exactly, it is obvious that exact cancellation would require an extremely complicated architecture.

Acoustic reverberation is so complicated that it can only be investigated under statistical consid-

erations. The number of acoustic modes in the audiofrequency range is much greater than the

coefficients available to obtain a 40-60 dB ERLE typically demanded of an AEC. Fortunately, the

eigenfrequencies are highly overlapped and therefore they can be reduced to statistical averages to

provide a much more parsimonious number of modes [114]. It has been observed that the fre-

quency response of typical rooms are composed of a sequence of maxima and minima spaced

roughly 5 Hz apart. The average frequency spacing of adjacent maxima can be calculated using

Rice’s formula [115]. If we model each maximum/minimum pair by a 2nd

order IIR filter section consisting of 5 free parameters each, the total number of parameters to

model the range [0-3.4 kHz] assuming a 5 Hz spacing is approximately 3400. This is far less than

described by (4.2) however, it is still quite large. 

Temporal Distribution of Reflections. The temporal nature of a reverberant signal in a room can

be obtained by using the method of room images [113]. The resulting temporal density of reflec-

tions NR arriving at time t is;

( 4.3)

T60 and NR can be used to generate realistic simulated room impulse responses and is one of the

methods used in simulations presented in this thesis. 

1.  Eigenfrequencies are the solutions to the room wave equation and can be thought of as vibrational modes 
(or frequencies) for which a standing wave will exist in a rectangular room with rigid boundaries.

∆fmax( ) δ 3( )⁄=

NRd
dt

---------- 4πc3t2

V
----------=



4.2 Experimental Set-up 59

4.2  Experimental Set-up

The measurement setup used in this thesis is shown in Figure 4.2. A modified speakerphone1 is

positioned in either an anechoic chamber or a conference room and excited with either bandlimited

white noise or speech depending on the conditions desired. Noise was generated using a General

Radio Company 1390-B Random Noise Generator. Artificial speech recordings were provided by

Bell Northern Research and reproduced using a Sony TC-D7 Digital Audio Tape (DAT) recorder.

The source signal selected was then filtered to the telephony bandwidth (200Hz to 3400Hz) with a

cascade of two National Semiconductor TP3040 switched capacitor filters to provide greater than

60dB of stopband attenuation. The loudspeaker of the modified phone was driven with an ampli-

fied version of this filtered excitation signal. The amplification was accomplished with a 75W

dual-channel Samson Servo-150 studio-quality power amplifier. The output level of the amplifier

can be varied to provide a sound pressure level (SPL) anywhere from 60 dB to 100 dB as measured

0.5m directly above the loudspeaker, depending on the HFT used. Conference room dimensions

and layouts may be found in Appendix A. A listing of the equipment used and relevant parameters

may be found in Appendix B.

A set of pre-conditioning circuits were used to attenuate the reference signal, and amplify the pri-

mary microphone signal to equate their levels at the DAT’s inputs. Both circuits are based on the

Analog Devices AD524 instrumentation amplifier. A separate high quality microphone was some-

times used to bypass the electret microphone in order to remove enclosure vibration and coupling

effects. The primary and reference signals were recorded to DAT using a Teac DA-P20 DAT

recorder at a level of approximately -6 dB with noise, and a peak level of -6dB with speech. The

data was later downloaded to a personal computer workstation (PC) for off-line processing by res-

1.  Each phone is modified to allow access to the internal loudspeaker and microphone terminals.
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ampling the data at 16kHz with an Ariel DSP-96 card. The data vectors were then issued to a vari-

ety of adaptive filtering programs written specifically for this thesis in Matlab and C. Schematics

of various circuits used in the experimental setup can be found in Appendix C.

Several commercially available HFT’s are used in the experiments (refer to Appendix B for a list

of HFT and transducer parameters). The HFT under test is placed either on top of a conference

table (conference room recording) or on a 1m square board on the floor of an anechoic chamber

(anechoic recording). Measurements were made with a number of modified handsfree terminals

and separate microphone and loudspeaker components. By separating the loudspeaker and micro-

phone, different quality loudspeakers can be tested for linearity, and in addition, the coupling

between the loudspeaker and microphone due to the enclosure effects can be removed. 

Loudspeakers tested outside of a handsfree terminal enclosure in this way were mounted in a stan-

dard baffle made of 3/4 inch plywood with the loudspeakers placed as indicated in Appendix A,
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Figure A.3. For quick recordings in the lab, a noise shielding box was constructed consisting of

two boxes, one inside the other to provide noise immunity from the external environment. It was

constructed with 0.25 inch thick cardboard with corrugated foam glued to both the inside and out-

side surfaces. The box provided 21.9 dB of sound attenuation, however, some reverberation was

still observed at 100 ms.

Impulse response measurements are obtained experimentally by averaging the weight values over

the last few thousand samples of a 4 second data file. The reference excitation in this case is fil-

tered noise, with amplitudes varying between 55 dB and 100 dB sound pressure level (depending

on HFT used and measurement desired) as measured 0.5 m from the loudspeaker. Results obtained

using HFT #1 in anechoic and conference room environments are shown in Figure 4.3.

4.2.1  Considerations for Practical Problems

There were many practical problems associated with obtaining good measurements with the exper-

imental setup. These problems included obtaining correct dynamic range for the DAT both during

FIGURE 4.3   HFT#1 impulse responses. (a) as measured in the anechoic chamber (b) as
measured in conference room #2 .
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recording, and during playback to the ARIEL board, common mode voltages caused by 60 Hz AC

power lines and fluorescent lighting, DC bias effects and linearity settings on the ARIEL card

itself. 

• Particular attention to circuit layout and ground loops was necessary. Initial problems were

caused by high gain amplifiers and balanced-to-single ended conversion circuits, and lack of a

single point ground. 

• In initial amplifier designs, harmonics from the 60 Hz AC power lines and 33 KHz electric

fields generated by fluorescent lights were picked up by the microphone amplifier. A number of

circuit revisions were necessary to obtain decent rejection of these interfering signals. 

• Physical separation of the signal conditioning amplifiers was necessary to prevent electrical

crosstalk from correlating the reference and primary signals.

• Solid grounding and installation of small decoupling capacitors on the inputs and outputs of the

switched capacitor filter circuits were necessary to reduce noise generated by a 2.048 MHz

TTL level master clock inside the BPF box. 

• Any unshielded cables tended to pick up noise in the audio band, primarily 60Hz harmonics,

due to the close proximity of the test equipment to the circuits. It was necessary to use a

shielded1 twin-axial cable to obtain small (microphone) signals, as well as prevent crosstalk

between the high level reference and low level primary cable inputs.

• Linearity and gain settings to avoid clipping in the ARIEL board had to be adjusted to optimal

settings. Early measurements revealed that the linearity of the ARIEL card was not adjusted

correctly.

DC bias compensation. In any physical circuit, DC bias voltages will be present. Temperature and

loading fluctuations will vary the DC bias at the amplifier outputs up to 10mV or more. Offsets in

the Ariel card were found to be approximately -15 mV and -30 mV for the left and right channels

respectively. Algorithms that do not compensate for DC bias will not converge to the optimum

1.  The shield is grounded to chassis ground at the AD524 end, an is ungrounded at the microphone end.
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weights. Rather than modifying the data files, each of the algorithms was modified to include an

adaptive DC bias term. The compensated NLMS algorithm (for example) is the same as previously

described except an additional tap weight is added to insert a DC bias value;

( 4.4)

( 4.5)

( 4.6)

where b is a fixed bias weight, in most cases set to 0.01 and µ is the step size which must be chosen

so that:

( 4.7)

The effect of this additional parameter is to slow convergence slightly and reduce the achievable

ERLE from approximately 127 dB to approximately 70 dB, however, this value is still far below

where most physical ERLE values were located (20-40 dB).

4.2.2  Maximum Achievable ERLE of the Experimental Set-up

The maximum achievable ERLE of the experimental setup was found by replacing the Loud-

speaker-Room-Enclosure-Microphone (LREM) system (see Figure 4.2) with a passive attenuator

network. The modified setup was excited with bandlimited white noise. The achievable ERLE was

calculated using a 10 tap NLMS adaptive filter with a step size of 0.5. The resulting curve is

shown in Figure 4.4. Also plotted is an asymptotic curve which represents an estimate of the max-

imum achievable ERLE of the experimental setup based on an estimate of the primary signal’s

y n( ) wT n( )x n( ) wbias n( )b+=

w n 1+( ) w n( ) µe n( )x n( )+=

wbias n 1+( ) wbias n( ) µe n( )b+=

µ α

ε x n( ) 2 b2+ +
---------------------------------------=



4.2 Experimental Set-up 64

SNR. The maximum achievable ERLE of the measurement setup was found to be approximately

56dB.

Further experiments were conducted to evaluate the experimental setup more completely and pro-

vide an explanation for the limitation in performance. The results are displayed in Figure 4.5. The

line labelled Ariel corresponds to converged ERLE values for a variety of equivalent DAT record

levels1 obtained by injecting bandlimited white noise directly into the analog input ports of the

Ariel board. An achievable ERLE in excess of 70dB was obtained for record levels greater than -

13dB. The additional quantization noise added by first sampling the data to DAT degraded the

achievable ERLE by approximately 8dB as shown in the curve labelled DAT + Ariel. Finally, the

performance of the complete setup is illustrated by the line labelled Full Setup. This curve is simi-

lar to that shown in Figure 4.4  except that the reference signal voltage is held constant at 1Vrms

1.  For the Ariel curve the input voltage is converted to an equivalent DAT record level with knowledge of 
the DAT’s input/output transfer characteristics to support comparison between the curves.
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while the record level at the DAT is adjusted. These results suggest that the current limitation of

56dB is caused by noise added by the primary (microphone) amplifier. Improving the noise perfor-

mance of this amplifier is unnecessary, however, because as demonstrated in the remainder of this

chapter a variety of physical limitations act to limit ERLE to a level below 56dB.

4.2.3  Speakerphone Test Results

The six HFT’s listed in Appendix B were tested in an anechoic chamber to determine the magni-

tude of the limitations to ERLE caused by design variation. The purpose here is to provide some

measure of the spread in ERLE due to HFT designs, and not to isolate each of the factors which

contribute to this error. The steady-state ERLE performance for each HFT, at each SPL level was

obtained by averaging the instantaneous ERLE over the last 4000 samples of 4 seconds of adapta-

tion (sampled at 16 kHz) using the NLMS algorithm with a step size α=0.5. The results are plotted

in Figure 4.6. The steady-state ERLE varies over a very large range, with HFT#1 and #6 having
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the best performance characteristics and HFT#5 having the worst. At high volumes, all HFT’s are

limited by strong nonlinear distortion and vibration effects1 introduced by low-quality loudspeak-

ers and poor acoustic design. Based on these results, HFT #1 and #6 are used for subsequent exper-

imental baseline measurements.

4.3  Evaluation of Linear IIR Structures for Acoustic Echo Control

In the literature on this subject, Tahernezhadi and Liu [116] propose a real-time implementation of

an IIR AEC using the LATIN (Lattice and Inverse Lattice) structure originally proposed by Chao

and Tsujii [117]-[118]. Experimental ERLE values in [116] of 25 dB are reported using only 30

zeros and 30 poles on speech signals, however no simulations were provided to verify these find-

ings and the characteristics of the LREM are not presented. Chao and Tsujii [117] use a simplified

LREM consisting of one pole and 9 zeros. It has been found (see Section 4.2) that small amounts

1.  To be shown in Section 4.6 and Section 4.5.

FIGURE 4.6   Converged ERLE for six HFT’s at various sound pressure levels (measured 1m
from the loudspeaker) in an anechoic chamber. 1000 tap FIR trained with NLMS, all cases.
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of crosstalk in physical circuits can correlate the primary and reference signals and provide overly

optimistic results, which might explain how 25 dB ERLE is obtained with so few variables assum-

ing that a real LREM was used. In [119] Fan and Jenkins show that an IIR echo canceller for a data

hybrid performs better than an FIR filter after convergence, and that convergence is quite slow if

the order of the filter is greater than two. However, it is not clear if the same conclusions can be

extended to the AEC case. 

4.3.1  Hankel Error Bound for Approximating an FIR Filter with an IIR Filter

In [114] the fundamental question of whether poor performance stems from a sub-optimality of the

updating procedure or from an irrelevancy of the pole-zero structure itself is investigated. Is it pos-

sible to approximate with a small error bound an all-zero transfer function by a pole-zero transfer

function1 with fewer parameters, and does it make sense to fit a pole-zero model to the phenome-

non underlying the LREM? The Hankel-norm approximation of a known all-zero transfer function

H(z) of order M can be used to obtain an error bound on the use of a reduced order IIR filter

[120][121]. If H(z) is defined as the useful part of an all zero transfer function to be identified;

( 4.8)

Then the Hankel matrix  is defined as a symmetric matrix formed out of the coefficients

h1...hM of the room impulse function H(z);

1.  Although an actual room impulse response theoretically consists of poles only, because all frequencies 
are reflected to some degree, it is convenient to model the impulse response with an all-zero structure

H z( ) h1 h2z 1– … hMz M 1–( )–+ + +=
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( 4.9)

The maximum error bound on approximating the M th order FIR response with an N th order IIR

response can be obtained by the following equation;

( 4.10)

where  are the Hankel singular values of , K=M-N, where M is the number of

coefficients in H(z) and N is the order of the approximating IIR filter. The diagonal matrix  may

be obtained by finding a nonsingular transformation matrix T such that

 ( 4.11)

where ( 4.12)

Simulations results in [114] showed that a radio-mobile echo path consisting of 512 all-zero coef-

ficients could efficiently be modelled with a -30 dB error using a pole-zero structure with 128

parameters, however, a -28.8 dB error could be obtained with an FIR structure with the same num-

ber of coefficients! 

Hankel Bound Experimental Results. Two room impulse responses (slowly decaying and quickly

decaying) were generated using the techniques described in Section 4.1.2. The results showing the

approximation error bounds are shown in Figure 4.7. The low error bound near O(IIR)=256 is arti-

factual and comes about as perfect modelling is achieved when O(FIR)=O(IIR). However, the

ΓH
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results do provide a rough estimate of the achievable error bound for lower IIR filter orders up to

approximately 200.

For a slowly decaying LREM impulse response, the number of IIR parameters required to model

the impulse is almost the same as the FIR case, however, for faster decaying impulses, the number

of IIR parameters is correspondingly less. This analysis suggests that for environments that posses

small reverberation times, like automobiles, IIR structures might be suitable filter candidates,

however, for environments that have long reverberation times, the advantages of IIR compared to

FIR structures are marginal.

4.3.2  Comparison of MA, ARX and OE-IIR Modelling

In the literature, Gundvangen and Flockton [122] [123] made a comparison between pole-zero and

all-zero modelling of acoustic transfer functions. Three different identification structures were

used, one FIR and two IIR structures based on output error (OE) and equation error1 (EE) formula-

tions. In the IIR models there is another parameter in addition to the total number of coefficients,

FIGURE 4.7   Approximation error bound [dB] for identifying LREM’s with different
reverberation times. Impulse responses are obtained from measured LREM’s truncated to 256
points. (a) Slowly decaying LREM needs an IIR filter order of 200 to achieve a -30 dB error bound.
(b) Quickly decaying LREM needs an IIR order of 110 to achieve the same error bound. 
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namely the ratio of zeros to poles. The ratio that gave the best ERLE for the OE model was

approximately 5:2, although the exact ratio was not at all critical. They found that the OE consis-

tently gave marginally better performance than the FIR and that the EE model performed a few dB

worse than the FIR due to the bias of this particular model. They also reported that to achieve a

particular ERLE, the number of coefficients for both the FIR and IIR models was found to increase

substantially with increased reverberation time. 

Experimental Results using OE and EE-IIR Modelling. In order to investigate the pole/zero

ratio question as applied to transducer components only (which was not covered in [123]) an OE-

IIR model was fitted to measured data obtained in an anechoic chamber with results shown in Fig-

ure 4.8 (a). For comparison, results using the EE-IIR algorithm on data collected using HFT#6 are

shown in Figure 4.8 (b). 

1.  The EE formulation can be obtained through a two input ARX fitting.

FIGURE 4.8   Experimental results of IIR modelling showing ERLE vs. ratio of poles to zeros for
IIR models fitted to experimental LREM data. (a) ARX modelling for SPK#1 and MIC#2 in an
anechoic chamber. (b) OE-IIR model for HFT#6 in conference room #2.
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For both experiments, the total number of parameters was fixed at 600, with the number of poles

varying between 0 (i.e. all-zeros) to 600 (all-pole). The parameters used are shown in Table 4.2.

The EE-IIR algorithm obtains a slight improvement in performance with an increasing number of

poles, for low volumes. Almost no change in ERLE is observed at high volumes by changing the

pole/zero ratio. The results verify conclusions made in [123] about the ratio of pole/zero ratio

(being not critical) and also suggest, as in [123] that in the HFT context, the advantages of IIR

modelling are minimal. Results using the OE-IIR algorithm shown in Figure 4.8 (b) indicate again

that there seems to be no overall gain in ERLE by swapping poles for zeros. 

Conclusions. It does not appear possible to obtain the same ERLE with significantly less parame-

ters using IIR filters (compared to an FIR filters) to model a reverberant echo path. This seems to

be confirmed by the Hankel-norm error bound of Figure 4.7. Based on the above analysis, litera-

ture survey, and DSP processing limitations, it would appear that all-zero FIR structures have an

advantage over IIR methods. Considering that a typical LREM impulse may be thousands of milli-

seconds duration, we must be satisfied to model the physical phenomenon with an undermodelled

system and try to obtain the best fit possible according to the reverberation characteristics. 

TABLE 4.2   Parameters for experimental results presented in Figures 4.8(a) and (b).

Figure Algorithm Parameters Location Comments
(a) EE LMS IIR, Appendix D.6 µa=µb=0.001. Anechoic Transducers
(b) OE LMS IIR, Appendix D.7 µa=µb=0.001. Conf. Rm. #2 HFT#6
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4.4  AEC Performance Limitations

The limitations of AEC’s include the following:

1. Noise, Finite Precision and Quantization: Acoustic noise from fans and air conditioning in the

room as well as thermal and impulsive circuit noise from amplifiers, and DSP related noise

such as truncation, quantization and finite word lengths place a limit on the achievable steady-

state ERLE [124] [97].

2. Undermodelling of the Acoustic Transfer Function: When the number of taps or variables in

the AEC adaptive filter is less than the acoustic impulse response of the room, the uncancelled

tail portion of the LREM manifests itself as a finite error at the output of the AEC [1][125]. 

3. Enclosure Vibration Effects: An important new finding1 is that vibration and resonances

within the enclosure can significantly limit achievable ERLE if proper acoustic design of the

enclosure is not realized. In addition, the early reflections in the impulse response are due to

LREM coupling effects which are generally much larger in amplitude than the delayed echoes

[126]. 

4. Transducer Nonlinearities:2 Generated mainly in the loudspeaker, nonlinear distortion effec-

tively puts a limit on the achievable ERLE of algorithms based on linear mechanics [127]. 

5. Algorithmic Performance: Initial convergence rate, dynamic tracking ability in nonstationary

conditions, behavior with correlated (speech) inputs [95] and the ability to detect and handle

double talk situations [128]. 

All of the above mentioned limitations will serve to reduce the achievable ERLE and will be dis-

cussed in greater detail subsequently. The model used in the analysis includes the above limita-

tions is shown in Figure 4.9.

4.4.1  Noise, Finite Precision and Quantization

Noise components in the primary signal include room noise, microphone circuit noise and quanti-

1.  No mention of this important physical limitation has been mentioned in the literature.
2.  First mentioned by Knappe and Goubran [1] as a limitation in AEC’s.
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zation noise. These can be modelled as white noise sources with variances σR
2,σM

2 and σd
2. The

effect of these noise components is to reduce the achievable steady-state ERLE to a level approxi-

mately equal to equation (4.1) where  is replaced by  and .

Uncorrelated room noise is usually the largest contributor to the overall noise introduced into the

primary path. In the absence of other effects, room noise contribution becomes the asymptote for

the achievable converged ERLE [1]. 

Microphone/Circuit Noise. This is generated mainly in the sensing electronics for the microphone

element. A typical electret microphone will be biased through a dropping resistor of a few kΩ to

provide a bias voltage for the microphone element. The output voltage change from such a

microphone is defined by  where α is a constant, Vb is the bias voltage across the

electret capacitive element and  is the change in capacitance due to the impinging sound wave.
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FIGURE 4.9   Complete LREM model includes enclosure reflections and vibration as well as
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Thermal noise from the bias resistor will be added to the microphone which itself has a noise level

in the vicinity of -100 dBV. The microphone output signal is amplified to line levels of approxi-

mately 100 mVrms which also amplifies the noise. However, except for anechoic conditions at

very low volume levels, this noise has been found to be generally far below typical room noise.

This conclusion is also verified by the results shown in Figure 4.5.

Quantization and Fixed Point Internal Arithmetic in DSPs. A full analysis of fixed point arith-

metic for the LMS algorithm can be found in [125] which states that the total output mean square

error for the LMS algorithm can be expressed as:

( 4.13)

where J is the MSE at the output, Jmin is the minimum MSE of the optimal (Weiner) filter wo, a is

a scaling factor used to bring the maximum levels to +/- 1.0, N is the number of taps in the FIR

structure, µ is the step size parameter, and c is a constant. The coefficient quantization noise

 is the variance introduced by the coefficient quantization where Bc is the number

of binary quantization levels (i.e. bits) in the coefficient representation. Similarly, σd2 is the vari-

ance introduced by the data (sampling) quantization introduced by Bd quantization levels.

Although one may be tempted to reduce the step size µ to reduce the excess mean square error (i.e.

the second term), it may result in a large quantization error generated in the third term due to the

stalling phenomenon in fixed point processors. There exists an optimum value of µ which mini-

mizes the total output MSE, however, it is too small to allow the algorithm to converge completely.

Figure 4.10(a) illustrates the MSE as a function of the adaptation step size µ where the number of

bits Bd in the data representation and Bc in the coefficient representation are the same. 
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1
2
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In the LREM model of Figure 4.9, quantization noise is uncorrelated with the primary signal so

appears at the output essentially unchanged. Reference signal quantization noise on the other hand

is modified by the adaptive filter transfer function as it adapts. The effect of A/D quantization

noise on ERLE is illustrated in Figure 4.10(b). The converged ERLE is independent of the signal

level of the primary or reference signal levels when floating point is used. However, when the pri-

mary signal is quantized, the maximum level of converged ERLE will be determined by the ratio

of the primary signal power to the quantization noise at the location of A/D converter. 

In practice an ERLE of 25 to 35 dB seems to be the physical limit to the achievable ERLE in real

systems. The results presented in this section have shown that the limitations due to algorithmic

noise and truncation effects are far below this limit, and therefore should not have a significant

impact on the final ERLE value.
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4.4.2  Undermodelling of the LREM

In this section we investigate the effect of using an FIR structure to model a transfer function

where the number of parameters in the candidate system will be less than that required to exactly

identify the system. This gives the undermodelled system: . An analysis of

the finite length AEC by Kuo and Chen [129] shows that a finite filter length will have a better

ERLE performance using speech than white noise. Poltmann [130] showed that the achievable

ERLE is a function of both the step size and magnitude of the modelled and undermodelled LREM

coefficients. For a system modelled by an FIR transfer function the achievable steady state ERLE

assuming a white noise input can be calculated from; 

( 4.14)

where  represents the power in the modelled coefficients up to order M-1 and  repre-

sents the power in the tail portion of the LREM from M to infinity. If µ is set to 0, (4.14) is equal to

the Total Impulse response Power to the uncancelled Tail Power (TIP/TP) ratio originally pro-

posed by Knappe and Goubran [1], who demonstrated that the TIP/TP ratio defines the achievable

ERLE up to approximately 20 dB. Beyond this point, other effects dominate. Experimental mea-

surements in [1] show that even at ratios of (S+N)/N of greater that 40 dB, the ERLE did not go

beyond 25 dB, with the most likely suggested cause of this ERLE limitation being loudspeaker

nonlinearities. 

The TIP/TP ratio is invaluable for determining the optimum number of AEC filter taps to use

given a certain loudspeaker, microphone and enclosure. For example, the impulse response of HFT

#6 measured inside conference room #2 at 85 dB SPL is shown in Figure 4.11 (a). Figure 4.11 (b)

shows the calculated TIP/TP vs. ERLE ratio compared to the measured ERLE by using (4.14) and
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the NLMS algorithm. The ERLE will follow the TIP/TP ratio very closely up to a certain number

of taps according to (4.14), however, in experimental recordings, nonlinearities and vibration

effects will limit the achievable ERLE. 

Comparison with Hankel Norm Error Bound. A plot showing the comparison of the logarithmic

“inverse” of the TIP/TP ratio and Hankel norm error bound for HFT#6 is shown in Figure 4.12.

The results show that the Hankel error bound closely follows (but is lower than) the TIP/TP ratio

and verifies earlier conclusions that the performance gains of IIR structures over FIR structures are

not substantial, and that given the added complexity, FIR based structures are preferable.

4.4.3  Algorithmic Limitations

Dynamic Tracking in Nonstationary Conditions. As objects move and the input signal character-

istics become nonstationary, the tracking ability of the algorithm becomes important. For example,

although RLS based algorithms have fast convergence and have been shown theoretically to have
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FIGURE 4.11    Undermodelling of the LREM. Measured results of HFT #6 at 85 dB SPL. (a)
Impulse response measured in a conference room #2. (b) calculated TIP/TP and measured ERLE
using NLMS algorithm. 
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tracking capability equivalent or better than the LMS algorithm in low noise [131], it has been

found in [95] that algorithms based on instantaneous gradient estimates like the LMS family out-

perform RLS algorithms in conference room conditions using real speech where the SNR of the

primary signal is often quite low. 

Colour Insensitive Algorithms.  LMS based algorithms suffer from poor convergence when

trained by quasi-periodic signals with highly coloured spectra, like speech. The most mature

scheme for mitigating this problem is subband filtering [132] [133], however, RLS based algo-

rithms [134] and block frequency domain methods [135] are also popular. Often, a combination of

architectures and algorithms is necessary to obtain satisfactory performance. A brief summary is

presented in [112]. A comparative analysis of eight different algorithms is presented in [136]

showing measured performance metrics (See Table 4.1) for the single talk mode only using both
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FIGURE 4.12   Comparison of TIP/TP ratio with Hankel error bound for data measured in
conference room #2 using HFT #6 at 65 dB SPL.
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USASI noise signals and speech signals. Of eight algorithms/structures tested, the generalized

multi-delay filter (GMDF) [137], which is based on [138] obtains the best performance metrics.

The unconstrained fast LMS [139] and wavelet decomposition technique [140] also produce good

results. An algorithm presented in [141] uses a fast Newton training scheme to obtain performance

enhancement with speech signals. However, measurements were obtained using a short impulse

response (for use in automobile environments). No results were presented for an HFT in a highly

reverberant venue. Recently, the Fast Affine Projection (FAP) algorithm [143] [144] has been pro-

posed as an alternative to RLS type algorithms. The FAP can be considered a generalization of the

NLMS algorithm with weight updates based on an affine projection in multiple dimensions.

Double Talk. Double talk (DT) occurs during periods when the far end speaker and near end

speaker are simultaneously talking. The effect of DT is to increase the noise in the primary signal

(similar to additive room noise described in Section 4.4.1 ) causing a temporary decrease in the

ERLE and a slowing of the convergence and tracking ability. In a full-duplex system, it is often

necessary to freeze the adaptive filter coefficients such that divergence of the tap weights does not

occur. The most drastic form of DT control is push-to-talk (half-duplex or single-talk mode) which

was the “defacto” standard until the advent of adaptive filters for removing echo. The literature is

full of techniques for performing DT, for example [137] describes a method of detecting local

speaker activity by comparing the spectral shapes of the primary and reference signals, using an

appropriate distance. A large Euclidean distance is an indicator of the presence of a local talker.

The method described in [145] proposes a short term cross correlation between the error output

 and the canceller output  for controlling the step size. The correlation is used to

obtain fast convergence during single-talk periods and low sensitivity during double-talk periods.

Other methods are outlined in [128] and [130].

e n( ) y n( )
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4.4.4  Complexity Issues

The choice of algorithm has an impact on the type of hardware resources needed to implement a

real-time system. For a review of the impact of specific algorithm architectures on available DSP

platforms see [142]. In terms of complexity, Table 4.3 summarizes the comparison between vari-

ous algorithms previously introduced.

Note: M refers to the order of the filter, and N refers to the projection window size and P refers to the size of

the predictor variables. na and nb refer to the number of poles and zeros in an IIR structure.

4.5  Effect of Enclosure Vibration and Resonance

An important new discovery is that vibration and resonances within the enclosure can significantly

limit achievable ERLE if proper acoustic design of the enclosure is not realized. In addition, rat-

tling of the handset and keys has been observed. Recent measurements have shown that in HFT’s

with plastic enclosures, rattling and vibration cause a significant increase in the uncorrelated noise

TABLE 4.3    Comparison of Algorithm Complexities

Algorithm Type
Convergence 
Speed

Multiplications 
per sample Comment

LMS LMS slow 2M simple
NLMS LMS slow 2M+1
VSS LMS slow 2M
MVSS LMS slow 2M
RLS RLS fast 2M2+6M Complex
FTF RLS fast 7M unstable
SFTF RLS fast 8M
LMS-IIR OE slow 4(na+nb) local minima
LMS-IIR EE slow 2(na+nb) biased minimum
FCG CG selectable LMS to RLS complexity/per-

formance tradeoff
FNTF RLS selectable 2M+12P complexity/per-

formance tradeoff
FAP RLS selectable 2M+30N complexity/per-

formance tradeoff
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signal introduced into the primary path, depending on the volume of the loudspeaker signal.

4.5.1  Experimental Results

Experimental Results: Converged ERLE. Figure 4.13 shows the effects that rattling and vibration

have on the achievable ERLE of HFT #1.  The basic loudspeaker and microphone configuration

obtains the highest ERLE. The performance drops when the components are added into the enclo-

sure. When the keys are allowed to rattle, the ERLE drops even further and finally, when the hand-

set is placed on the set, a 10 dB reduction in ERLE is observed at 75dB SPL as compared to the

case with microphone and loudspeaker only. At the low volume levels near 50 dB SPL, the ERLE

is limited primarily by the SNR of the primary signal and unbalanced two point suspension system

nonlinearities within the loudspeaker.

FIGURE 4.13   Effects on achievable ERLE due to vibration and rattling. HFT #1. Converged
ERLE as volume in increased from 60 dB SPL to 100 dB SPL with various handset
configurations. 600 tap FIR trained with the NLMS algorithm, all cases.
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Primary Power Spectral Density . The primary power spectral density (PSD) of HFT #1 is illus-

trated in Figure 4.14(a). It is clear that when the components are mounted inside the enclosure, the

level of the out-of-band (distortion) signal increases substantially with an increase in the reference

signal level. Figure 4.14(b) shows the PSD of the loudspeaker and microphone components when

they are removed from the plastic enclosure (this removes the effect of vibration, noise and echo).

Notice that the distortion in the frequency range 4-8 kHz is significantly reduced. However, there

is still an increase in the out-of-band signal level which is essentially the nonlinear components of

the original bandlimited (reference) signal. However, the level of distortion is much less than that

due to vibration (shown in 4.14 (b)). 

This is an important result which tells us that vibration can be a more serious problem than loud-

speaker distortion in the HFT domain.

Enclosure Effects on Impulse Response. The early reflections in the impulse response are in part

due to LREM coupling effects which are generally much larger in amplitude than the delayed ech-
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FIGURE 4.14    Effect of enclosure vibration and nonlinearity. (a) HFT #1. Primary signal PSD
with loudspeaker and microphone inside the HFT enclosure. Out-of-band components increase in
level as the volume is increased from 60 dB SPL to 100 dB SPL. (b) same as (a) but with
components removed from enclosure and mounted inside a standard baffle. 
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oes. Some of this coupling comes from the air path between the loudspeaker and microphone,

however, a substantial part is due to vibrational coupling in the HFT enclosure itself. Results

shown in Figure 4.15(a) illustrate the large early reflections when the transducers are mounted

inside the HFT enclosure. The measurements were performed using the setup of Figure 4.2 in the

anechoic chamber. Also shown in Figure 4.15 (b) is the recovered impulse response when the

transducers have been removed from the HFT enclosure. The loudspeaker is placed in a standard

baffle with the microphone placed 8” directly in front. The large tap values at the beginning of the

LREM impulse response, which correspond to the enclosure vibration coupling are totally absent.

Direct coupling can be modelled with fixed parameters (if the parameters are known) or using the

adaptive filter with a small step size for the early part of the reflection. This technique is called

Beta-grading and is described further in [112] and [146]. 
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FIGURE 4.15    Experimental Results inside the anechoic chamber. (a) Impulse response of
HFT#5 measured at medium volume. (b) Impulse response of the microphone and loudspeaker
removed removed from HFT #5 and placed in a standard baffle is significantly different.
Parameters: NLMS algorithm, α=0.5, 32000 samples @ 16kHz, averaged over last 2000.
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4.5.2  Microphone vibrational sensitivity

Given that enclosure vibration is a problem, a microphone element with low mechanical vibration

sensitivity will reduce the vibration effect mentioned previously and minimize the magnitude of

the early reflections. The mechanical sensitivity of a microphones will depend on the orientation

of the microphone element with respect to the axis of vibration and also displays a frequency

dependence with the lower frequencies being more sensitive than higher frequencies. A typical

electret microphone will exhibit a peak vibration response in the low frequency ranges in the vicin-

ity of 300 Hz. Table 4.4  lists some typical measured audio sensitivities of electret microphones

and Table 4.5  lists the corresponding mechanical vibrational sensitivities in dbV/G.

If we model the vibrational acceleration using a one dimensional harmonic motion ,

the acceleration a acting on the microphone element is . Thus, a microphone

element must travel a radius of 2.8 µm to generate 1G acceleration (9.8m/s2) at 300 Hz. It is rea-

sonable to assume1 that the microphone output due to vibrational coupling is not negligible when

compared to the acoustical coupling. The measurements presented here (See Figure 4.14) seem to

confirm this hypothesis. 

TABLE 4.4   Electret microphone acoustic sensitivity

Orientation Microphone Sensitivity
Nominal Acoustic 
Level Output Voltage

Parallel -30 (to -40) dBV/Pa -30 dBPa -64 dBV

TABLE 4.5    Mechanical vibrational sensitivity

Orientation Frequency Sensitivity Acceleration 
Output 
Voltage

Parallel 300 Hz -32 dBV/G 1 G -32dBV
Parallel 1KHz -36 dBV/G 1 G -36dBV
Perpendicular 1KHz -65 dBV/G 1 G -65 dBV

1.  Based on correspondence with [147].

x r ωtcos=

a ω– 2r ωtcos=
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4.6  Effect of Transducer Nonlinearities

In this section transducer nonlinearities are investigated. Generated mainly in the loudspeaker,

nonlinear distortion effectively puts a limit on the achievable ERLE when using algorithms based

on linear mechanics. 

4.6.1  Computer Simulation Setup

A computer simulation setup to determine the effects of distortion products on an FIR filter trained

with the NLMS is described. The setup for the identification of a nonlinear system is illustrated in

Figure 4.16. 

The reference training signal is white gaussian noise with a unit variance which is subsequently

bandlimited by a 10th order elliptical bandpass or lowpass filter with a frequency response that

closely corresponds to the characteristics of the switched capacitor transmit filters used in the

experimental setup. The frequency responses are shown in Figure 4.17.  

The implied sampling rate is 16 kHz, even though the filter cutoff is 3.4 kHz. The justification for

+Σ
-

BPF

Distortion

Artificial
Room
Impulse

FIR

Filter

FIGURE 4.16   Nonlinear system identification model. The system to be identified consists of a
fixed or variable memoryless nonlinearity followed by an exponentially decaying impulse
transfer function.
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this oversampling is that significant distortion products are generated “outside” the bandwidth of

the filter allowing one to obtain a rough estimate of the severity of the distortion by observing the

increase in out-of-band distortion products. In the model of Figure 4.16, The distortion is gener-

ated by one of three methods given below. 

Distortion Method #1. The first distortion model generates an output which is defined by;

( 5.1)

where a, b and c refer to the magnitudes of the linear, quadratic and cubic products respectively.

Distortion Method #2. The second distortion model generates an output defined by;

( 5.2)

where a is a parameter which regulates the amount of squashing. For high values of a, the squash-

ing distortion becomes more severe as shown in Figure 4.18.

FIGURE 4.17   Telephony Filter Characteristics. (a) Bandpass (b) Lowpass.
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Distortion Method #3. The third method of generating distortion is by using the nonlinear state-

space equations (2.9) through (2.12) as listed in Section 2.2. In this case, the amplitude of the ref-

erence signal is amplified before being applied to the distortion model.

4.6.2  Computer Simulation Results

Table 4.6 lists the distortion parameters used for the three distortion methods.The artificial room

impulse is obtained from the methods outlined in Section 4.1.2 and is truncated to a length of 10

for simulation purposes. A 15th order DC-compensated NLMS algorithm with a normalized step

TABLE 4.6   Distortion Parameters.

Distortion 
Method Figure Distortion Parameters
1 Figure 4.19(a) a=1, b varied 1e-3,3e-3,1,e2,3e-2,1e-1,3e-1,1

c=0
1 Figure 4.19(a) a=1, b=0, c varied: 1e-3,3e-3,1,e2,3e-2,1e-1,3e-1,1
1 Figure 4.19(a) a=1, b=c=1e-3,3e-3,1,e2,3e-2,1e-1,3e-1,1
2 Figure 4.19(b) Squashing function a=0.1,0.3,0.5,1,1.5,2.0
3 Figure 4.19(c) Reference signal amplification factor 

a=0.1,0.3,0.5,1,1.5,2.0

FIGURE 4.18   Variable hyperbolic tangent squashing function for different values of the
parameter a.
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size parameter α=0.5 is used in all the following simulations. The converged ERLE values aver-

aged over the last 4000 iterations of a 48000 sample data file are plotted.

For distortion method #1 the coefficients b and c produce a signal-to-distortion ratio (SDR) which

is computed based on the method presented in Appendix E. The simulation results for distortion

methods 1,2 and 3 are shown in Figure 4.19(a),(b) and (c). . 

FIGURE 4.19   Simulation results showing ERLE performance of an adaptive FIR filter trained
with the DC-compensated NLMS algorithm. (a) Distortion model #1. (b) Distortion model #2. (c)
Distortion Model #3.
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Effect of Bandlimited Primary Signal for Distortion Method #3. The primary, reference and

error signal PSD’s are plotted in Figure 4.20 for the case where a=1.5. In Figure 4.20 (a), the pri-

mary signal is not bandlimited. The error signal closely approximates the primary signal out-of-

band, suggesting that the nonlinearity has produced out-of-band distortion products that cannot be

removed by the linear adaptive filter. The converged ERLE is 18.14 dB. In Figure 4.20 (b), the pri-

mary signal is bandlimited to remove the out-of-band distortion products. However, in-band dis-

tortion products still limit the converged ERLE to 18.94 dB. 

4.6.3  Experimental Results

Figure 4.21 illustrates the PSD of the primary, reference and error signals of the transducer compo-

nents of HFT #1 (mounted using the standard baffle) inside an anechoic chamber. The volume is

100 dB SPL, as measured 0.5 m from the loudspeaker. The error signal is obtained at the output of

an adaptive FIR filter trained with the NLMS algorithm, a=0.5 and N=600 taps. Similar to the

FIGURE 4.20    Simulation results showing the PSD of the primary, reference and error signals
for distortion model #3, a=1.5. (a) Unfiltered primary signal. PSD of error signal closely
approximates the primary signals at the frequencies beyond the filter cutoff resulting in a
converged ERLE of 18.14 dB. (b) Filtered primary signal. PSD of error signal is attenuated due to
filter, however, in-band distortion products still limit ERLE to 18.94 dB.
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computer simulation results shown in Figure 4.20, it can be seen that the error signal closely

approximates the out-of-band primary distortion components in the 4-8 kHz frequency range. The

converged ERLE for this SPL averaged over the last 4000 samples of a 32000 length training vec-

tor is 18.69 dB. These results are very similar to the simulated case.

4.6.4  Effect of Transducer Quality

A simple test showing the effect of a combination of high and low quality loudspeakers and micro-

phones is illustrated in Figure 4.22. The relevant parameters are listed in Table 4.7.

TABLE 4.7   Transducer Parameters

Name Definition Model Rating Notes
HQL High quality 

Loudspeaker
AD4061/W8 8Ω, 10W 4” dia. round. Large mag-

net, high quality.
LQL Low quality 

loudspeaker
8Ω, 0.25W, 
2”round spkr.

Removed from HFT#4

HQM High quality 
microphone

Audio Technica 
AT831b and power 
module

Cardioid sens. -44 
dBm 200Ω.

“High quality” microphone 
element.

LQM Low quality 
microphone

Archer 270-090 4.5VDC thru ext. 
1kΩ. S/N >40 dB, 
Sens.=-6.5 dB

Electret Microphone (low 
cost).

FIGURE 4.21   Experimental results showing the PSD of the primary, reference and error signals
for HFT #1 transducer components as measured inside the anechoic chamber. The error signal
closely approximates the primary signals at the frequencies beyond the filter cutoff.
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The ERLE averaged over the last 4000 iterations of a 48000 sample data file are plotted. The

results show that the loudspeaker has the major effect on the achievable steady ERLE perfor-

mance. The microphone has some effect on achievable ERLE but this is secondary with respect to

the loudspeaker. These measurements were made in an anechoic chamber with the loudspeaker

mounted in a standard baffle and the microphone placed 30 cm directly in front of the loudspeaker

using a microphone boom. This measurement technique removes the effects of room noise, enclo-

sure vibration, echoes and direct coupling. The important observation is that the converged ERLE

is low at both the high volume end (where nonlinearity is significant), and the low volume end,

where circuit noise and two point suspension effects become significant. The minimum modelling

error occurs in the middle volume ranges
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FIGURE 4.22   Combination of high or low quality loudspeaker (HQL or LQL) and a high or low
quality microphone (HQM or LQM) on the ERLE performance as a function of loudspeaker
power. The loudspeaker quality is the major component affecting achievable ERLE and the
microphone quality is secondary. Parameters: 1000 tap dc compensated NLMS, α=0.5.
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4.7  Summary and Discussion

The chapter has addressed the acoustic echo cancellation problem in HFT’s. A review of the per-

formance requirements has determined the following:

• Both speech enhancement and noise reduction techniques need to be employed to obtain an

overall subjective improvement. 

• Transducer nonlinearities need to be addressed to obtain the high ERLE values cited in the per-

formance recommendations. 

• Acoustic reverberation is shown to be an extremely complicated process that can only be mod-

elled under statistical considerations.

Section 4.2 presents the measurement setup and illustrates that potential problems such as circuit

noise, grounding, and cross-talk must be treated before making measurements to ensure that the

minimum MSE obtained using a particular algorithm is due to the algorithm itself and not limita-

tions in the test setup. Experiments have confirmed the maximum converged ERLE of the basic

setup is approximately 56 dB.

In Section 4.3, the study of the application of IIR structures to the AEC problem concludes as fol-

lows:

• IIR model approximations do not lead to significant decreases in the number of parameters

(compared to FIR models) necessary to obtain the same ERLE values.

• The Hankel norm approximation error bound for IIR filters has similar characteristics to the

TIP/TP ratio, and suggest that IIR structures are not well suited to modelling typical LREM’s.

In Section 4.4, various performance limitations are studied, with conclusions as follows:

• An analysis of noise, finite precision effects and quantization shows that these limitations are

generally far below the typical ERLE levels encountered in real world AEC’s.
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• There seems to be a close correlation between the ERLE limits predicted by the TIP/TP ratio

and the Hankel error bound.

In Section 4.5, the effects of enclosure vibration and resonances are studied, with the following

conclusions:

• Rattling keys and handsets on the terminal have a measurable effect on the achievable ERLE.

Limiting the movement of keys and handsets generally improves the achievable ERLE.

• Results have been presented which illustrate that direct coupling between the microphone and

loudspeaker due to the enclosure radically changes the impulse response.

• Enclosure vibration can be a more serious problem than loudspeaker distortion as measured in a

number of commercially available HFT’s. However, it is highly dependent on the type of HFT

enclosure.

In Section 4.6, the effects of transducer nonlinearity are studied. The conclusions are summarized

as follows:

• In the absence of other limitations, loudspeaker nonlinearity will limit the achievable steady

state ERLE in linear structures. The ERLE value will be determined approximately as the ratio

of the powers of the nonlinear distortion products to the linear products within the primary sig-

nal.

• Distortion products manifest themselves as harmonics which will be generated both within and

outside the bandwidth of interest.

• There is a high degree of correlation between the uncancelled error signal and the out-of-band

distortion products in both simulated and experimental results using linear structures.

• Given that the vibration and resonances can be removed through proper acoustic design,

improvements in transducer quality will also improve the achievable ERLE.
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Summary of Steady-State Performance Limitations. 

• Undermodelling of the acoustic transfer function is directly related to the number of taps in the

adaptive filter, and will be the major limitation when the number of taps is insufficient to cover

the LREM impulse response. 

• Given a sufficient number of taps, the limitations to the steady-state ERLE are in order of

importance; (1) enclosure vibration and/or nonlinear distortion, (2) room noise (in a typical

conference room) and (3) DSP and circuit noise. 

• The effect that vibration and loudspeaker nonlinearity have on the achievable ERLE is highly

dependent on the frequency and volume of the reference signal as well as the type of HFT being

used. 

An illustration showing the relative contributions is illustrated in Figure 4.23.
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FIGURE 4.23   Achievable ERLE as a function of physical limitations.
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Chapter 5
Nonlinear Structures For Acoustic 
Echo Control

This chapter presents several new architectures consisting of cascaded nonlinear and linear sec-

tions for the identification of nonlinear systems with memory and dispersion. The specific applica-

tion is for improved ERLE performance for nonlinear echo cancellation in the HFT domain.

In the first two subsections the Volterra and multi-layer neural network filter models are applied to

the identification of both simulated and experimental data. The results presented form a baseline

for comparison to the new architectures presented in subsequent sections. Next, the following new

structures are developed; (1) A parallel cascaded neural network-FIR structure with a mixed lin-

ear-sigmoid activation function; (2) A TDNN structure that uses fully adaptive activation func-

tions in addition to the variable weights in the hidden layers; (3) A cascaded synaptic FIR neural

network including the adaptive activation functions described previously. The learning rules are

derived by modifying the gradient backpropagation algorithm for the specific architecture. 

5.1  The Adaptive Volterra Filter

Adaptive Volterra filters have been applied to compensation of low frequency loudspeaker nonlin-
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earities [4][13], however, all the loudspeakers tested in the literature are “woofer” designs and the

author could find no literature on the application of Volterra filters to small loudspeakers, such as

those encountered in the HFT domain. To this end, data obtained from an HFT inside a typical

conference room, as well as HFT audio transducers (as measured inside an anechoic chamber) are

applied to a nonlinear adaptive Volterra filter to determine how well it is suited for this application.

Simulation results comparing the LMS-Volterra and NLMS-FIR filters on the distortion models

from Section 4.6.1 are first examined.

5.1.1  Simulation Examples

A 3rd order adaptive LMS-Volterra filter is constructed to study how it behaves while attempting

to model nonlinearity as generated using the artificial distortion methods of Section 4.6.1. Tap

updates are based on the Volterra algorithm in Appendix D.8. Results are compared to the NLMS-

FIR filter. For each of the simulation results, the filters are allowed to train for 64,000 samples and

the converged ERLE results are obtained from the average of the last 4000 points.

Distortion Model #1, combined quadratic and cubic distortion. In this test the following parame-

ters are used: , , , , , .

The results are shown in Figure 5.1 with a performance summary given in Table 5.1. The reference

signal r(n) in this test case is a uniformly distributed white noise source with unit variance, which

is either filtered first or applied directly to the distortion generator and dispersive LREM, similar

to the method in Figure 4.16.

m1 m2 m3 10= = = α 0.5= µ1 0.1= µ2 0.01= a 1= b c 0.2= =
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The results shown in Figure 5.1 (a) and (b) illustrate the convergence curves for the unfiltered case

TABLE 5.1 Summary of simulation results shown in Figure 5.1.

Reference Filtering Figure Converged ERLE 

NLMS-FIR LMS-Volterra
Unfiltered Figure 5.1(a), (b) 17.9 dB 132.9 dB
BPF filtered Figure 5.1(c), (d) 15.3 dB 44.2 dB

FIGURE 5.1  Simulation results. Volterra identification of a nonlinear system generated using
distortion model #1 (a) converged ERLE vs. SDR, unfiltered r(n). (b) convergence curve for
highest distortion level, unfiltered r(n). (c) converged ERLE vs. SDR, filtered r(n). (d)
convergence curve for highest distortion level, filtered r(n).
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for different distortion parameters, where b=c are varied. The Volterra filter can easily identify the

unknown system. However, the results in Figure 5.1 (c) and (d) also indicate that when the signal

is filtered, the performance of the LMS-Volterrafilter is degraded.

Distortion Model #2 and #3. The simulation results for distortion model #2 and #3 are shown in

Figure 5.2(a) and (b). For distortion model #2, m1=m2=m3=10. For distortion model #3,

m1=m2=m3=20. For both cases, α1=0.5, µ2=1e-1 and µ3=1e-2. 

In the simultions presented above, the Volterra filter consistently outperforms the linear FIR filter.

5.1.2  Experimental Results

A fully connected 3rd order adaptive Volterra filter with m1=1000, m2=100 and m3=40 is con-

structed in an attempt to model real-world loudspeaker nonlinearity in a typical AEC configura-

tion. Tap updates are based on the algorithm in Appendix D.8 with a normalized step size

parameter α1=0.5, µ2=1e-1 and µ3=1e-2. Three experiments are conducted, using data which was

recorded in different venues using different HFT’s. For all experiments, the sound source is fil-

FIGURE 5.2  Simulation results. Converged ERLE using a Volterra filter for the identification of
a simulated nonlinear system generated using (a) distortion method #2 (b) distortion method #3.
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tered noise, as per the test set-up described in Section 4.2.3, recorded at a volumes ranging from 55

to 100 dB SPL as measured at 0.5 m directly above the loudspeaker.

HFT #1, Anechoic Chamber, with and without enclosure. The loudspeaker and microphone

from HFT #1 are removed and placed in an anechoic chamber for the first set of measurements.

Subsequently, they are placed back inside the HFT enclosure for a second round of measurements.

The results shown in Figure 5.3(a) illustrate that approximately 6 dB improvement in converged

ERLE can be obtained using the LMS-Volterra filter compared to a1000 tap NLMS-FIR filter for

identifying an LREM consisting of the audio transducers only. In Figure 5.3(b) the converged

ERLE vs. volume is shown for HFT#1 with the components mounted inside the enclosure. Notice

that the LMS-Volterra filter is no longer able to obtain any gains over the FIR filter. This is due to

the vibration limits as discussed in Section 4.5. The converged weights of the Volterra filter are

illustrated in Figure 5.4(a), (b) and (c) which show the weight values obtained for the linear, qua-

dratic and cubic sections respectively. The difference between the linear weights obtained with the

FIGURE 5.3 HFT #1 results, anechoic chamber. Converged ERLE vs. SPL for (a) separately
mounted transducer components and (b) with components mounted inside the enclosure.
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NLMS algorithm is also shown in Figure 5.4(d).

HFT #6 in Conference Room #2. HFT #6 is stiffened against vibration. The results shown in Fig-

ure 5.5 indicate that using this HFT a 7.1 dB performance improvement over the NLMS-FIR filter

may be obtained. 

FIGURE 5.4 Volterra tap weights for HFT #1 at 100 dB SPL. (a) Linear tap weights, (b)
quadratic tap weights. (c) Cubic tap weights. (d) difference between Volterra and FIR linear tap
weights.
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A summary of the experimental results showing the regions of greatest improvement over the FIR

filter structure is shown in Table 5.1.

5.1.3  Discussion

The LMS-Volterra filter is easily able to outperform the NLMS-FIR filter by several 10’s of dB

when presented with simulated data. However, the convergence rate may be severely limited by

the increased eigenvalue spread of the input data, which becomes prohibitive as the number of fil-

ter parameters increases. 

Assuming an LMS update, the Volterra filter will have a an approximate complexity of 2Me+2

TABLE 5.2 Summary of experimental parameters and results for the Volterra filter.

Experiment 
Location Figure Components

SPL
Volume Converged ERLE 

Improvement
over FIR

[dB]
FIR/
NLMS

Volterra
/LMS dB

Anechoic Figure 5.3 (a) HFT #1 
Components

100 27.3dB 33.5 dB 6.2

Anechoic Figure 5.3 (b) HFT #1 95 28.6 28.8 0.2
Conference Figure 5.5 (a) HFT #6 90 21.2 dB 28.3 dB 7.1

FIGURE 5.5 HFT #6 results. (a) Converged ERLE vs. SPL. (b) Convergence curves for data at
90 dB SPL.
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where Me is the dimension of the extended weight vector according to equation (3.59). Assuming a

1000 tap input from which 100 taps and 40 taps are used to obtain the quadratic and cubic sections

respectively, the length of the extended vector will be will be 17530 weights, resulting in astagger-

ing complexity of approximately 35062 multiplications per iteration.

For nonlinear AEC’s using experimental data, it appears that the nonlinear Volterra filter can

improve the ERLE significantly, for example by 7.1dB using HFT #6. However these results are

highly dependent on the type of HFT being tested. An improvement could only be obtained when

either (i) audio components were isolated (and vibration was not a limiting factor) or (ii) HFT #6

was used (HFT#6 is stiffened against vibration). The experimental results also show that the con-

vergence is quite slow, and given the added complexity, this technique has a disadvantage for real-

time applications. These results suggest that alternative models and structures should be investi-

gated. 

Experimental results also show that there is very little difference between the linear weights

obtained using either the FIR or Volterra filter, and that only a small percentage of the nonlinear

weights are significant. Although results are not presented here showing nonlinear tap weights for

other volumes, analysis of experimental data at other volumes has determined that they do change

significantly with a change in applied volume. A set of nonlinear weights for one volume does not

necessarily correspond to the weights obtained at a different volume. This means that a significant

number of higher order weights must be retained to obtain a good modelling accuracy, however,

this results in an overwhelming number of weights and poor convergence. An “on-line” technique

for selecting the significant weights and pruning nonsignificant weights would be advantageous

for obtaining reduced complexity, however this is beyond the scope of this thesis.
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5.2  Neural Network Adaptive Filter

As an alternative to Volterra filters, artificial neural network (ANN) filters can be used to perform

nonlinear adaptive filtering. The “conventional” neural network filter structure uses a tapped delay

line (TDL) at the input to a static MLP as illustrated in Figure 5.6. Waibel et al. first proposed this

structure in [46] and referred to it as a tapped delay line neural network (TDNN). The structure is

defined by the nomenclature (ni,h1,h2,no) which refers to the number of input nodes (i.e. number of

inputs from the TDL), the number of neurons in the first and second hidden layers, and the number

of output nodes respectively. For all the results that follow, no is set equal to 1 and each node in the

hidden layer has a tanh( ) sigmoid function defined by the equation (3.6). The output node is a lin-

ear summation and the activation potential to each sigmoid includes an adjustable bias.

5.2.1  Computer Simulation Examples

A two layer TDNN filter is applied to the three distortion models described in Section 4.6.1. Tap

updates are based on the gradient BP method using a normalized step size (with respect to the

power in the TDL) with α=0.5. For each of the simulation results, the algorithms are allowed to

Z-1

Σ

−
+

Σ

Z-1 Z-1 Z-1. . .

Sigmoid

Sigmoid

Tapped
Delay
Line

FIGURE 5.6 Tapped delay line neural network (TDNN) filter.
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train for 64,000 samples and the converged ERLE results are obtained from the average of the last

4000 points.

Simulation #1: Selection of number of hidden nodes for a two layer TDNN. In this test a com-

parison of the two layer TDNN and FIR filters is presented using a 10 tap input with a normalized

step size of 0.2, and distortion model #1. The reference signal r(n) in this test case is a uniformly

distributed white noise source with unit variance, which is applied directly to the distortion gener-

ator (quadratic and cubic distortion) and dispersive LREM, similar to the method in Figure 4.16.

The number of hidden nodes is first selected by trying a number of different architectures based on

the models (10,n1,1) where n1 represents the number of hidden nodes. The results showing con-

verged ERLE are shown in Figure 5.7 for different n1 with quadratic/cubic distortion generated

according to method #1, for high level distortion (a=b=c=1) and low level distortion (a=1,

b=c=0.2). Figure 5.7(a) shows the result when an unfiltered reference is used and Figure 5.7(b)

show the results for a bandpass filtered reference.

Based on these results, a (10,5,1) model was chosen for subsequent tests as a good compromise

FIGURE 5.7  Simulation #1 results showing converged ERLE vs. increasing number of hidden
nodes for a (10,h1,1) TDNN. (a) Unfiltered reference (b) Filtered reference.
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between complexity and performance. The results of Figure 5.7 show that there is very little differ-

ence between the performance of the TDNN structure when the reference data is filtered or unfil-

tered. For “low level” distortion with b=c=0.2, the simulated TDNN performance in Figure 5.7 is

between 6 and 7 dB higher than the equivalent FIR structure.

Simulation #2: Distortion models #1, #2 and #3. The simulation results shown in Figure 5.8 (a)

(b) and (c) are obtained using the methods in Section 4.6 and distortion models #1, #2 and #3

respectively.Again, the TDNN structure obtains a higher ERLE value in the high distortion ranges,

but is generally not as good as the FIR-NLMS structure as low distortion levels. 

Simulation #3: Comparison of two and three layer TDNN. In this simulation, a comparison of

the number of parameters for two and three layer TDNNs is done for the case where the artificial

room impulse response is of length 500. In this simulation, distortion model #1 is used with a=1,

b=c=0.2.Results shown in Table 5.3 summarize the results. 

The three layer network consistently performs worse than the FIR linear counterpart and suggests

that in the context of nonlinear AEC application, networks with a single hidden layer are suitable

to the task.

TABLE 5.3 Simulation results using TDNNs with one and two hidden layers.

LREM 
order Type Size Step Size

Converged 
ERLE [dB]

500 FIR (500 tap) 0.5 16.3
500 2 hidden layers TDNN (500,5,5,1) 0.5 15.1
500 2 hidden layers TDNN(500,5,2,1) 0.5 15.5
500 2 hidden layers TDNN(500,2,2,1) 0.5 16.0
500 1 hidden layer TDNN(500,5,1) 0.5 16.9
500 1 hidden layer TDNN(500,2,1) 0.5 17.3
500 1 hidden layer TDNN(500,1,1) 0.5 17.5
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5.2.2  Development of a Mixed Linear-Sigmoid Activation Function

A neural network filter will generate a finite amount of distortion due to the nonlinear nature of the

sigmoid. In some simulations, the TDNN performs worse or only slightly better than a conven-

tional FIR adaptive filter, especially at low distortion values as demonstrated in Section 5.2.1. In

order to mitigate this effect, a mixed linear-sigmoid activation function is proposed which has a

linear portion in the middle The nonlinear node consists of a linearized hyperbolic tangent function

FIGURE 5.8 Simulation results for (a) distortion method #1, (b) distortion method #2 and (c)
distortion method #3. A (10,5,1) TDNN is used for (a) and (b) and a (15,5,1) TDNN is used for (c)
to cover the impulse response generated by method #3.
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which is linear for inputs below a user definable amplitude p, where . By setting the

parameter p it is possible to reduce the modelling error by a few dB compared to a conventional

(i.e. p=0) sigmoid1. The node activation function ϕ(s,p) is defined by;

( 5.1)

where s is the input. Differentiating (5.36) with respect to s, we obtain the slope of the activation

function:

( 5.2)

Figure 5.9 shows the activation function of equation (5.36) with values of p equal to 0.0, 0.5, and

0.9, along with the associated  values.

1.  Improvements depend on the severity of the nonlinear distortion.

0 p 1≤ ≤
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FIGURE 5.9 Adaptive activation function and derivative with respect to s for p=0.0, 0.5 and 0.9.
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For data that is weakly nonlinear, the weights in the TDNN will adjust to provide an activation in

the linear region of the sigmoid, and thus offer improved performance. Simulation results showing

the effect of varying the linear region versus converged ERLE are shown in Figure 5.10 using dis-

tortion model #1 when a=1, b=c=0.01 (low distortion) and b=c=0.5 (high distortion). The opti-

mum value of linear region is highly dependent on the severity of nonlinearity encountered,

however, based on these results, the linear region p was set to either 0.0 or 0.5 in subsequent simu-

lations, as a good compromise between the two extremes. A better solution is to implement an

adaptive activation function, and this is discussed further in Section 5.5.

5.2.3  Experimental Results

A fully connected two-layer TDNN is used to model the loudspeaker nonlinearity in a typical AEC

configuration. Tap updates are based on the BP algorithm with a normalized step size parameter

α=0.5. For the experiments that follow, the sound source is filtered noise, as per the test set-up

FIGURE 5.10 Effect of changing linear region in a mixed linear-sigmoidal activation function.
(10,5,1) TDNN on distortion model #1 with a=1 and b=c=0.01 (low distortion) and b=c=0.5 (high
distortion)
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described in Section 4.2.3, recorded at a various volumes ranging from 50 to 100 dB SPL as mea-

sured at 0.5 m directly above the loudspeaker.

HFT #3, Anechoic Chamber, no enclosure. The results in Figure 5.11 indicate that a significant

difference in performance comes about as a result of changing the “linear” region of the sigmoid

activation function, for the case where 300 taps are used in the input TDL. For example, by chang-

ing p from 0.5 to 0.0, an improvement of 4.8 dB ERLE is seen in the 100 dB SPL range, but a deg-

radation of 1.9 dB is observed at 75 dB SPL. Another significant result is that a (1000,1,1)

structure performs worse than a (300,1,1) TDNN structure, all other parameters being the same.

HFT #1, Anechoic Chamber, with and without enclosure. The results shown in Figure 5.12 (a)

are for the isolated components case and illustrate that a marginal improvement in converged

ERLE can be seen using a (300,1,1) TDNN as compared to the standard 1000 tap NLMS-FIR fil-

ter. However, at 75 dB SPL, an improvement of approximately 4 dB is obtained. Note that this level

of improvement was not achieved using the Volterra filter structure (refer to Figure 5.3 a).  The

results for the transducers mounted inside the HFT enclosure are shown in Figure 5.12 (b). The

FIGURE 5.11 HFT #3 experimental results, anechoic chamber, components only.
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TDNN structure has difficulty in identifying the HFT transfer function, but again, this can be

attributed to the vibration limits as discussed in Section 4.5

HFT #6 in Conference Room #2. HFT #6 is stiffened against vibration. The results shown in Fig-

ure 5.13 indicate that performance is better than the NLMS-FIR filter for volumes greater than 57

dB SPL when using an HFT #6. Over 5 dB improvement is observed at 65 dB SPL. 

FIGURE 5.12 HFT #1 results, anechoic chamber, TDNN. Converged ERLE vs. SPL for (a)
separately mounted transducer components and (b) with components mounted inside the HFT
enclosure.
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FIGURE 5.13 HFT #6 results for a 2 layer TDNN. (a) Converged ERLE vs. SPL for the NLMS,
(1000,1,1) and (200,1,1) structure. (b) Convergence curve for data at 65 dB SPL.
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A summary of the experimental results showing the areas of greatest improvement is given in

Table 5.1.

5.2.4  TIP/TP Performance for the TDNN in the Undermodelled Case

Experimental data was applied to the TDNN structure to determine the optimum length for the

TDNN section for the highest volume (100 dB SPL) case. The results shown in Figure 5.14 illus-

trate that for a system with undermodelling of the impulse length, a TDNN structure has improved

ERLE performance compared to the NLMS-FIR filter. The experimental data was obtained from

HFT #3 components in an anechoic chamber. The TDNN model is an (n0,2,3,1) structure. The best

performance occurs when the number of input taps n0=150 taps. Here the difference between the

TDNN and FIR ERLE value is approximately 5.5 dB.

TABLE 5.4 Summary of experimental results showing regions of greatest improvement.

Figure
Experiment
/Location HFT

TDNN 
parameters

SPL Converged 
ERLE 

Improv
ement
over 
FIR

Model p [dB]

1000 
tap 
FIR/
NLMS

TDNN/
BP [dB]

Figure 
5.12(a)

Anechoic HFT #1 
Compo-
nents

(300,1,1) 0.5 75 35.5 
dB

41.1 dB 5.6 dB

Figure 
5.12(b)

Anechoic HFT #1 (1000,1,1) 0.5 70 34.7 
dB

37.5 2.8 dB

Figure 5.11 Anechoic HFT #3 
Compo-
nents

(300,1,1) 0 100 18.9 
dB

23.7 4.8 dB

Figure 5.13 Conference HFT #6 (1000,1,1) 0.5 65 32.8d
B

38.1 dB 5.3 dB

Figure 5.13 Conference HFT #6 (200,1,1) 0.1 95 13.4 17.1 3.7 dB
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5.2.5  Discussion

The simulation results presented in Section 5.2.1 indicate that the TDNN structure is capable of

obtaining improved steady state ERLE performance when the nonlinear distortion becomes signif-

icant. For low distortion, the TDNN is unable to model the nonlinearity as well as the linear FIR

filter. 

The complexity breakdown for a two layer TDNN is listed in Table 5.5.

Note: n0 equals the number of input nodes (TDL length), and n1 equals the number of hidden layer nodes.

TABLE 5.5 TDNN complexity assuming a single node output.

Equation Number Description Layer Mults. 
(3.60) vector dot product Input n0*n1

(3.67) weight update Input n0*n1+2
(3.67) bias update Hidden n1

(3.60) vector dot product Hidden n1

(3.67) weight update Hidden n1+2
(3.67) bias update Output 1
(3.68) delta calculation Output 1
(3.68) delta calculation Hidden n1+2

TOTAL 4*n1+2*n0*n1+8

FIGURE 5.14 HFT #3 components (i.e no enclosure), anechoic chamber. In an undermodelled
state a TDNN obtains a higher ERLE as compared with the FIR structure. 
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If we assume a 1000 tap input, with a 2 node hidden layer (i.e. n0=1000, n1=2), the complexity is

approximately 4015 multiplications per iteration.

Simulations using LREM’s of length 500 show that a TDNN with a single hidden layer is prefera-

ble over one with two hidden layers, and that a single node in the hidden layer was sufficient to

obtain ERLE improvements. From the perspective of nonlinear AEC application, this is beneficial

since such structures have a complexity comparable to the NLMS-FIR filter. 

The use of an activation function with a definable linear region is beneficial in low distortion envi-

ronments. Simulation results have shown that for low distortion environments, a large linear

region is preferable, whereas for high distortion environments, the converse is true, and suggests

that some form of adaptive control of the activation function may be beneficial.

Experimental results in Section 5.2.3 show that a two layer TDNN can obtain improvements in

converged ERLE between 2.8 and 5.6 dB at medium to high volumes where the distortion is great-

est, but does not perform as well as the linear FIR filter at low volumes. This is also observed in

the simulations. 

When HFT’s contain significant vibration due to poor enclosure design, the TDNN structure is

unable to obtain any clear improvements in ERLE, similar to results presented for the Volterra

case. However, where the HFT components are isolated, or where the HFT design mitigates the

vibration problem, the TDNN can improve the ERLE by up to 5.6 dB compared to the NLMS-FIR

filter.

TDNN performance also depends on the type of HFT being used. For example, at 65 dB SPL, a

(1000,1,1) TDNN structure will yield a net ERLE gain of 5.3 dB for HFT #6 but can have a net

loss of 3.8 dB for HFT #1.
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A surprising new result demonstrated in Section 5.2.4 is that a simple multilayer TDNN structure

is capable of obtaining improved ERLE convergence over that of a linear FIR structure for the

undermodelled case and suggests an intelligent way of combining low order TDNNs with linear

FIR structures for obtaining improved performance in both the low and high volume ranges.

5.3  Comparison of Results - Volterra vs. TDNN

Complexity. For low order systems, the Volterra network is an attractive option for dealing with

weak nonlinearities. However, in AEC applications, the system orders make the complexity pro-

hibitively large. The TDNN offers comparable performance at a fraction of the cost of a fully con-

nected Volterra filter. For example, a 1000 tap NLMS-FIR filter will have a complexity of

approximately 2004 multiplications per iteration. The TDNN structure has a computational

requirement of 4015, approximately twice that of the LMS algorithm. By comparison, the Volterra

complexity is 17 to 20 times that of the LMS algorithm.

Convergence. The Volterra algorithm has an initial convergence comparable to the NLMS algo-

rithm but slows down considerably as the MSE decreases. The TDNN structure has a slower initial

convergence than the NLMS algorithm but can obtain a steady state MSE faster than the Volterra

algorithm. This suggests that a method of improving the convergence, without sacrificing tracking

ability would be advantageous.

Modelling Accuracy. The Volterra filter obtains slightly better error performance than the TDNN

structure for most of the cases investigated. For low volumes, the Volterra filter obtains the same

performance as the linear FIR structure. The TDNN structure on the other hand has difficulty in

obtaining the same performance as the linear FIR structure at low to medium volumes as predicted

by the computer simulations. However, the TDNN does offer significant improvements in the mid
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and high volume ranges and suggests that a combination of linear and nonlinear architectures

might be required for obtaining good performance both in low and high volumes. This is the topic

of the next section.

5.4  Two Stage Neural Filter 

In this section a new nonlinear adaptive filter for improving the echo cancellation performance at

both low and high volumes for handsfree telephones is proposed. The proposed structure shown in

Figure 5.15 consists of both nonlinear and linear sections and is constructed based on observations

from the previous sections. The nonlinear section consist of a two layer neural network that can-

cels the first part of the AIR where most of the energy is contained. The linear section effectively

ensures that residual signals not cancelled by the nonlinear section are accurately modelled. The

weight update equations for the nonlinear portion are based on the gradient backpropagation algo-

rithm with a normalized adaptive step size. The nonlinear node is defined by equation (5.1) and the

linear region parameter p was set to 0.2 since it was found that this produced an ERLE approxi-

mately 1.5 dB higher1 than with a conventional (i.e. p=0) sigmoid for the lower volumes. 

5.4.1  Weight Update Equations

In Figure 5.15, the output y(k) of the neural network portion at time k is defined by;

( 5.3)

 ( 5.4)

1.  Based on several tests varying the linear region using field data collected using HFT #6.

y k( ) w 2( ) k( )x 2( ) k( ) wb
2( ) k( )+=

x 2( ) k( ) ϕ s k( )( )=
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( 5.5)

where x(l)(k) represents the input vector to layer l, w(l)(k) represents the weight vector in layer l,

w(l)
b(k) represents the single bias weight for layer l, s(k) represents the input to the nonlinear node

and T is the transpose operator. The weight update equations are described by;

( 5.6)

( 5.7)
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FIGURE 5.15 Proposed two stage nonlinear AEC structure consists of both nonlinear and linear
sections.

s k( ) w 1( ) k( )Tx 1( ) k( ) wb
1( ) k( )+=

w l( ) k 1+( ) w l( ) k( ) µTDNN k( )δ l 1+( ) k( )· x l( ) k( )⋅–=

wb
l( ) k 1+( ) wb

l( ) k( ) µTDNN k( )δ l 1+( ) k( )·–=



5.4 Two Stage Neural Filter 117 

( 5.8)

where ,  represents the derivative of the activation function at the

input value s(k), δ(l+1)(k) represents the local gradient “delta” term in layer l+1, and µTDNN(k) is

the normalized step size parameter defined by;

( 5.9)

The parameter α is a number between 0 and 2, and is set to 0.5. The weights in the linear portion of

the proposed structure are updated using the NLMS algorithm; 

( 5.10)

( 5.11)

Complexity. The complexity of this algorithm is obtained by summing up the number of calcula-

tions in the weight update equations according to Table 5.6. Here, the division needed to compute

the normalized step size is counted as one operation, the sigmoid function and deltas are assumed

to be obtained from a ROM lookup table in DSP hardware, and m1 and m2 refer to the lengths of

the TDLs in the nonlinear and linear sections respectively.

TABLE 5.6 Complexity of the two stage neural filter.

Equation Number Description Layer Multiplications or Divisions
(5.3) output 2 1
(5.4) sigmoid 2 3
(5.5) vector dot product 1 n1

δ l 1+( ) k( )
2e– 1 k( ) l=2,output layer;

ϕ′ s k( )( )δ l 2+( ) k( )w l 1+( ) k( ) l=1,hidden layer;⎩
⎨
⎧

=

e1 k( ) p k( ) y k( )–= ϕ  ( )

µTDNN k( ) α

2 x 1( ) k( )
T

x 1( ) k( ) x 2( )[ ]
2

+ +
-----------------------------------------------------------------------=

wFIR k 1+( ) wFIR k( ) α

1 xFIR k( )TxFIR k( )+
--------------------------------------------------- e2 k( )· xFIR k( )⋅–=

wb k 1+( ) wb k( ) α

1 xFIR k( )TxFIR k( )+
--------------------------------------------------- e2 k( )–=
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Note: n1 equals the length of the TDNN portion TDL and n2 equals the length of the FIR portion TDL.

By comparison, the NLMS algorithm requires 2M+1 operations, where M is the order of the filter.

5.4.2  Experimental Results

Measurement Setup. Measurements are performed in Conference Room #2 using HFT #6 which

is placed on top of the conference table. The reference source signal consists of white noise which

is bandlimited from 300 Hz to 3400 Hz. The filtered reference signal is then amplified such that

the loudspeaker produces a sound pressure level (SPL) from 60dB to 95dB as measured 0.5m

directly above the loudspeaker. Primary and reference DAT signals are subsequently downloaded

to a computer via an ARIEL DSP96 board sampling at 16 kHz. These samples are then applied to

both the proposed structure and a 600 tap linear adaptive FIR filter which has DC bias compensa-

tion and weights updated in the same fashion as equations (4.4) through (4.7). In the proposed

structure, the number of taps in the nonlinear section delay line equals 200 to cover the bulk of the

loudspeaker impulse response. The number of taps in the linear section is 400 for a total impulse

(5.6) weight update Hidden n1+2
(5.7) bias update Hidden 1
(5.8) delta calculation Hidden 3
(5.6) weight update Output 2
(5.7) bias update Output 1
(5.8) delta calculation Output 1
(5.9) normalized step size TDNN 3

FIR output FIR n2

(5.9) normalized step size FIR 2
(5.10) weight update FIR n2+2
(5.11) bias update FIR 1
TOTAL 2*(n1+n2)+22

TABLE 5.6 Complexity of the two stage neural filter.

Equation Number Description Layer Multiplications or Divisions
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length of 600 taps which is sufficient to cover the bulk of the impulse response for Conference

Room #2. For each SPL, both algorithms are tested with the same input data of length 80,000 to

allow convergence to a steady state at which point the average ERLE is measured and plotted.

Results. In Figure 5.16 (a), experimental results are shown for the case where keys have been

taped down to prevent rattling at high volumes. Over 11 dB of improvement can be seen at 95 dB

SPL compared to the linear algorithm, and between 0-2 dB improvement is obtained over the rest

of the volume range. Figure 5.16 (b) shows the corresponding power spectral density of the pri-

mary and reference signals, as well as the error signals for the linear and nonlinear algorithms.

Figure 5.16 (c) shows experimental results for the case where keys are not taped down. Finally, the

convergence curves for case (c) are shown in Figure 5.16 (d). At low volumes in the vicinity of 60

dB SPL, the proposed structure improves the ERLE by 3 dB as compared to the NLMS-FIR filter

even though there is little nonlinear distortion in this range. In the low volume ranges, room noise

and two-point suspension nonlinearities are the dominant limitations and the proposed structure

offers some improvement. In the medium volume range from 70-75 dB SPL, the proposed struc-

ture performs about 1 dB poorer than the linear filter due to an extra bias weight variance not

included in the linear filter, and also because the sigmoid function will generate some small

amount of distortion for any  even when the inputs are linear. However, in the vicinity of 80

to 95 dB SPL where nonlinear effects dominate, the proposed structure clearly outperforms the lin-

ear filter in terms of converged ERLE and demonstrates over 8 dB improvement at 90 dB SPL. 

5.4.3  Discussion

A new structure to mitigate nonlinear loudspeaker distortion effects in AEC’s has been presented

in this subsection. The architecture is simple and the update algorithms are based on stochastic

s p>
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gradient methods. Experimental measurements in a conference room indicate that this new struc-

ture is capable of improving the ERLE by over 8 dB at high volumes where nonlinear effects are

significant and by over 3 dB at low volumes where room noise is significant. Most striking is the

difference in performance between data sets that have been collected with and without the keys

taped down (i.e. to prevent rattling). By taping the keys down, the proposed structure will achieve

1-2 dB improvement in converged ERLE in the low-medium volume ranges and a 4 dB improve-
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FIGURE 5.16 Experimental results showing performance of the proposed structure using HFT
#6 in conference room #2. (a) Converged ERLE, keys taped down. (b) plot of PSD of signals for
the taped keys case. (c) Converged ERLE, keys not taped. (d) convergence curve, keys not taped
down.
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ment in converged ERLE at 95 dB SPL compared to the case where the key movement is not

restricted. 

For the experimental results presented, the complexity of the two stage neural filter is only 2%

greater than the NLM-FIR filter. This is a marginal increase in complexity for the improvements

obtained.

Plots of the power spectral density of the signals (See Figure 5.16 (b) ) also show that the error sig-

nal is reduced in amplitude evenly across the full bandwidth, as compared to the error obtained

with the FIR/NLMS algorithm which closely follows the out-of-band primary signal PSD. For the

proposed structure, the error spectral density near the nyquist sampling frequency does not follow

the primary signal amplitude and this is due to the distortion “regeneration” phenomenon associ-

ated with passing a signal through a nonlinear sigmoid.

5.5  Variable Activation Function

In this section, the mixed linear-sigmoid activation function described previously in Section 5.2.2

is modified so that it is fully adaptive. The motivation for pursuing this idea is based on both sim-

ulation results (see Figure 5.10) and experimental results (see Section 5.2.3) which show that

improvements can be made by changing the size of the linear region in the activation function.

The idea of using an adaptive activation function in the realm of adaptive filtering has been previ-

ously proposed by Zhan and Li [148] as a method for realizing arbitrary nonlinear filters. How-

ever, the adaptive neural filter algorithm that [148] proposes is limited in application since the

activation function is placed at the output only and does not allow for placement in a hidden layer.

As well, the method proposed in [148] requires that training of the activation function be per-

formed with all other weights being held constant. In this section, these restrictions are removed by
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developing a training algorithm that allows the activation function to assume a fully adaptive role

regardless of its placement within the network, and without limitations on the training of the net-

work weights.

5.5.1  Development of the Learning Algorithm

We define the sigmoid function as given previously in equation (5.1), repeated here for conve-

nience.

( 5.12)

where s is the input and p defines the linear region. The instantaneous cost function Jinst at time n

is defined as;

( 5.13)

where;

( 5.14)

The algorithm attempts to minimize the  by the delta rule [87] for the vectors w and p by incre-

menting at each step towards the optimum vector using the negative gradient at that point. The

weight update equations for the weight vector w are shown in Section 3.7.1. For p we have;

( 5.15)

p is a vector consisting of all the p parameters for the sigmoids

ϕ s p,( )
s s p≤;

sign s( ) 1 p–( ) s p–
1 p–
--------------⎝ ⎠

⎛ ⎞ p+tanh⋅ s p>;
⎩
⎪
⎨
⎪
⎧

=

J n( ) Jinst n( )= 1
2
--- ei

2 n( )

i 1=

NL

∑=

ei n( ) di n( ) yi n( )–=

J

p n 1+( ) p n( ) η J∂
p∂

------–=
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( 5.16)

and  is a fixed step sizes.The output of node j in layer l is;

( 5.17)

where ϕ represents the nonlinear activation function and  is the node activation input. 

The derivation of the correction applied to vector p may be done by expanding the gradient as fol-

lows using the chain rule:

( 5.18)

Differentiating (5.13) with respect to , we get

( 5.19)

Differentiating (5.14) with respect to , we get

( 5.20)

Differentiating (5.17) with respect to , we get

( 5.21)

where  signifies derivative of the activation function output with respect to

the argument . Differentiating (5.12) with respect to p, and dropping reference to n, we get:

p n( ) p1
1( ) n( ) p2

1( ) n( ) … pn1

1( ) n( ) …pnL

L( ) n( ), , , ,[ ]=

η

xj
l( ) n( ) ϕ sj

l( ) n( ) pj
l( ) n( ),( )=

sj
l( ) n( )

J n( )∂
pj n( )∂

--------------- J n( )∂
ej n( )∂

---------------
ej n( )∂

xj n( )∂
---------------

xj n( )∂

pj n( )∂
---------------=

ej n( )

J n( )∂
ej n( )∂

--------------- ej n( )=

xj n( )

ej n( )∂

xj n( )∂
--------------- 1–=

pj n( )

xj n( )∂

pj n( )∂
--------------- ϕ'p sj n( ) pj n( ),( )=

ϕ'p sj
l( ) n( ) pj n( ),( )

pj n( )
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( 5.22)

Figure 5.17 shows the activation function of equation (5.12) with values of a equal to 0, 0.5 and

0.9, along with the associated  and  values.

The correction applied to  can now be redefined using the delta rule as:

( 5.23)

where the local gradient  for the parameter p is defined by

( 5.24)

ϕ'p s p,( )

0 s p≤;

sign s( ) θ( ) 1 p–( ) 1 θ( )tanh 2–[ ] θ 1–
1 p–
------------ 1+ +tanh–

⎩ ⎭
⎨ ⎬
⎧ ⎫

s a>;
⎝
⎜
⎜
⎜
⎛

=

where θ s p–
1 p
--------------⎝ ⎠

⎛ ⎞=

ϕ's s p,( ) ϕ'p s p,( )

FIGURE 5.17 Adaptive activation function and derivative with respect to p as the input s varies
for values of p=0.0, 0.5 and 0.9.
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Equation (5.24) is derived based on the adaptive activation function being in the output layer. If the

neuron is located in a hidden layer of the network, we must redefine the local gradient for neuron j

in the same way as the BP algorithm as follows:

( 5.25)

where

( 5.26)

Using (5.26) in (5.25), we obtain the local gradient  for a hidden neuron j in layer l,

( 5.27)

Equation (5.27) shows that the local gradient  is dependent on both the derivative (with

respect to p) of the associated activation function as well as the weighted sum of the δ’s computed

for the neurons in the next hidden or output layer which is connected to neuron j. 

It should be noted that there is no restriction on the type of nonlinearity used. For example, we

may define an alternate hyperbolic tangent function such as:

( 5.28)

ξj n( ) J n( )∂
xj n( )∂

---------------–
xj n( )∂

pj n( )∂
--------------- J n( )∂

xj n( )∂
---------------– ϕ'p sj n( ) p, j n( )( )= =

J n( )∂
xj n( )∂

--------------- ek n( )ϕk sk n( )( )wjk n( )

k 1=

Nl

∑– δk n( )wjk n( )

k 1=

Nl

∑–= =

ξj n( )

ξj
l( ) n( ) ϕ' pj

l( ) n( )( ) δk
l 1+( ) n( )wjk

l( ) n( )

k 1=

Nl

∑=

ξj n( )

ϕ s p,( ) 1
p
--- sp( )tanh=
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Yamada et al. [149] have used a similar unit function to construct a direct neural network control-

ler for robot manipulators, but with a different definition from that described above and without

giving the learning algorithm of the parameter p. A plot of the function and slope of (5.28) with

respect to the activation input s and the variable p is shown in Figure 5.18 for values of p= 0.5 and

2. It differs somewhat from that of (5.12) in that the function becomes linear as p approaches 0 and

highly nonlinear as p approaches infinity.

The advantage of the sigmoid of equation (5.28) is that a two layer TDNN structure with fixed

activation functions and a single weight on the output is similar to a single layer TDNN with a

FIGURE 5.18 Alternate activation function and derivative with respect to s as the input s varies
(b) derivative with respect to p as the input s varies.
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variable activation function. The complete algorithm is summarized below:

BP Algorithm with Variable Activation (VA) Functions:

Step 1: Initialization. Set all synaptic weights in input layer to zeros, and all other weights and

threshold levels to small random numbers that are uniformly distributed.

Step 2: Forward Computation. For all training samples, compute the activation potentials and

outputs of the networks forward layer by layer using the following equations:

( 5.29)

where represents both the output from the previous layer and the input to weight matrix

elements at time n. The output of node j in layer l is;

( 5.30)

Compute the error signal e(n) produced at the output layer (i.e. l=L) of the network;

( 5.31)

Step 3: Backpropagation of Errors. Compute the local gradients δ’s and ξ’s of the network by

proceeding backward, layer by layer:

sj
l 1+( ) n( ) wij

l( ) n( )xi
l( ) n( )

i 0=
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l( ) n( )

wij
l( ) n( )

xj
l( ) n( ) ϕ sj

l( ) n( ) pj
l( ) n( ),( )=

e n( ) d n( ) x1
L( ) n( )–=
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( 5.32)

( 5.33)

Step 4: Update Parameters. 

( 5.34)

( 5.35)

The value of  should be clamped above 0 for the sigmoid of equation (5.28) and

between 0 and 1 for the sigmoid function of equation (5.12).

5.5.2  Simulation Examples

In this section, the proposed algorithm is applied to the identification of a nonlinear system con-

structed using simulation method #1. The model is a (10,5,1) two layer network with a variable

activation function in the hidden layer, and a linear activation function in the output layer. A nor-

malized step size of 0.1 is used for updating the layer weights and the step size for adapting the

activation function is set to 0.001. Also shown for comparison is the NLMS-FIR filter using

δj
l( ) n( )

2e n( )ϕs′ sj
L( ) n( ) pj

L( ) n( ),( )– …l L=

ϕs′ sj
l( ) n( ) pj

l( ) n( ),( ) δk
l 1+( ) n( ) wjk

l( ) n( )⋅

k 1=

NL 1+

∑⋅ …1 l L 1–≤ ≤

⎝
⎜
⎜
⎜
⎜
⎜
⎜
⎛

=

ξj
l( ) n( )

2e n( )ϕp′ sj
L( ) n( ) pj

L( ) n( ),( )– …l L=

ϕp′ sj
l( ) n( ) pj

l( ) n( ),( ) δk
l 1+( ) n( ) wjk

l( ) n( )⋅

k 1=

NL 1+

∑⋅ …1 l L 1–≤ ≤

⎝
⎜
⎜
⎜
⎜
⎜
⎜
⎛

=

wij
l( ) n 1+( ) wij

l( ) n( ) µδj
l 1+( ) n( ) xi

l( ) n( )•–=

pj
l( ) n 1+( ) pj

l( ) n( ) ηξj
l 1+( ) n( )–=

pj
l( ) n 1+( )



5.5 Variable Activation Function 129 

α=0.1.

Simulation results in Figure 5.19  show that the variable activation TDNN is capable of achieving

a higher ERLE over the NLMS-FIR filter from 0-45 dB SDR and also achieves better steady state

ERLE compared to the conventional (i.e fixed activation function) model of Section 5.2. 

5.5.3  Experimental Results

HFT #6 in Conference Room #2.  In this experiment, a single hidden layer TDNN with variable

activation (VA) function is applied to the measured data. A normalized step size of α=0.5 is used

for the weight updates, and a fixed step size of 0.001 is used for the update of the p parameter.

The results shown in Figure 5.20 (a) indicate that the single layer VA TDNN filter has similar per-

formance to the regular TDNN structure results shown Figure 5.13. However, the VA TDNN filter

steady state ERLE performance is between 1 and 5 dB better than the fixed activation function

TDNN (See Figure 5.13) in the 57-95 dB SPL ranges. In the 50-55 dB range the performance is

still poorer than the FIR structure. Figure 5.20 (b) shows the corresponding convergence for the 95

FIGURE 5.19 Simulation results for distortion method #1, (10,5,1) variable activation TDNN,
filtered reference signal. (a) converged ERLE vs. SDR (b) convergence curve for the highest
distortion level.
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dB SPL case.

5.5.4  Discussion

Both simulationand experimental results show that the VA-TDNN is capable of achieving lower

modelling error for the identification of a nonlinear system that has a widely varying range of non-

linearity (for example a loudspeaker going into and out of the saturation range) compared to a net-

work using a conventional fixed sigmoid activation function. However, the convergence rate is

slower than the fixed activation TDNN especially for higher distortion values near 95 dB SPL. In

terms of application to AEC, the slowing of convergence is an undesirable feature, however, meth-

ods exist to improve the convergence performance of neural networks, and this is discussed further

in Chapter 6.

The results shown in Figure 5.20 (c) indicate that a single hidden layer TDNN can still achieve sig-

nificant modelling accuracy improvements as compared to the FIR structure, although they are

almost identical in architecture, save for the activation function. The important point to stress is

FIGURE 5.20 Experimental results for the variable activation function TDNN. (a) Converged
ERLE vs. SPL (b) convergence curve for an SPL of 95 dB.
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that this architecture has a complexity only slightly more than the NLMS algorithm since back-

propagation through several layers is not longer necessary and suggests that for the nonlinear AEC

problem, it is possible to obtain significant improvements in converged ERLE using simple non-

linear mechanisms. 

Similar to the conventional TDNN case, there is a significant improvement in converged ERLE in

the 60-75 dB SPL volume range. It suggests even in the so-called “linear” range of the loud-

speaker, there is small level of nonlinear distortion in the LREM that can be compensated, result-

ing in improved performance.

The VA structures presented in this section still do not model the low volume ranges very well.

The performance, for example at 55 dB SPL is still approximately 9 dB worse than the linear FIR

structure. Various parameter changes were made to see if this would make a difference, however,

no conclusive results were obtained to demonstrate a clear reason why this phenomenon occurs.

5.6  MLP with FIR Synapses and Variable Activation Function

Recent interest in deriving temporal neural network structures for modelling time-dependent sig-

nals has resulted in MLP structures with synapses described by FIR filters [49][47] and IIR filters

[42][43]. The architecture can be considered an extension of the classical feedforward structure

described previously in Section 3.7. In this section we examine the FIR MLP, which can be consid-

ered an ideal architecture for modelling cascaded linear-nonlinear-linear temporal structures of the

type illustrated in Figure 5.21. The FIR MLP is generalized to include the variable activation (VA)

functions developed in Section 5.5 and is then applied to simulated and experimental data.

The motivation for pursuing this line of attack is based on the encouraging results in [150] which

document a number of techniques for application in Time Series Prediction. The two most success-
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ful techniques outlined in [150] are based on function approximation using FIR and IIR filters

between synapses of a neural network and a state space modelling to develop a representation of

the system without knowing the system equations. 

State space modelling has already found success in nonlinear system identification and filtering

(see for example [79] [81]), and encouraging results are presented for the application of FIR MLP

architectures to time series prediction [49][47][151], however, no application of the FIR MLP

method has been found in the literature in the realm of real-time nonlinear adaptive filtering. Con-

sequently, the application of VA FIR MLPs to nonlinear AEC is examined here.

5.6.1  Network Architecture

The FIR MLP architecture is shown in Figure 5.22. Define the internal states of the network:

( 5.36)

where

 represent the input to the j-th FIR synaptic filter in the lth input layer

FIGURE 5.21 Using the FIR MLP to represent a cascaded linear-nonlinear-linear subsystem (i.e.
nonlinear HFT).
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Nl represents the number of nodes in layer l.

For the input layer, l=0, and for the output layer, l=L. The output of the ith FIR synapse is;

( 5.37)

where represents the dot product of vectors

( 5.38)

represents the FIR weight vector connecting the output of neuron i in the lth layer to the input of

neuron j in the l+1th layer and

( 5.39)

represents the vector formed from the output from the previous layer and the TDL of the

FIR connecting node i in the lth layer to node j in the l+1th layer. The activation level at the input to

the sigmoid nonlinearity of neuron j in layer l is

( 5.40)

where  is the bias added to the net input. The output at the lth layer is obtained by putting

through the activation function.

( 5.41)

5.6.2  Derivation of the Modified Temporal BP Learning Algorithm 

An algorithm for training networks having FIR synapses was first published by Wan [47] which is

based on the total squared error over the entire sequence of inputs as opposed to the “instantaneous
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error”. The calculations for the deltas  in [47] are in fact non-causal. Since it takes time

for the output of any internal neuron to completely propagate through the network, the change in

the total error due to a change in an internal state is a function of future values within the network.

The solution is to add a finite number of delay operators into the network states  and

propagate the deltas backwards without delay. The result is that the internal weights are updated at
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time (n) based on the deltas and internal states at time (n-D) where D is some fixed delay. This is

analogous to the delayed LMS algorithm (Kabal [152]) which exhibits a slower convergence (but

similar misadjustment) as compared to the standard LMS algorithm.

In [153], several training algorithms are presented for the FIR MLP based on whether the perfor-

mance criteria is obtained using an instantaneous error, or the total error by summing the instanta-

neous error over all time steps in a training sequence. The authors conclude that algorithms based

on minimization of the total error are very inefficient for networks of more than two layers. Wan’s

original temporal algorithm in [47] uses a total cost function and has an update delay to maintain

causality. Since the system we are trying to identify has a large order for FIR2, which is representa-

tive of a typical room response (See Figure 5.21), the update algorithms based on the total cost

function are not investigated since this would involve a large delay in the tap weight update, and

consequently slower convergence. 

The parameter update equations are derived in a way similar to Wan’s method [47], but with mod-

ifications as follows:

• We use an instantaneous cost function (rather than total cost function over all time).

• The adaptive activation function derived in Section 5.5 is used. 

We first consider the weight updates, and then the updates of the variable sigmoid parameter p.

Weight Update Derivation. The most straight forward way of updating the weight vectors is to

minimize the instantaneous cost function J (See equation (5.13)) using the stochastic gradient

descent algorithm at each increment of time n according to [47];
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( 5.42)

The partial derivative of  with respect to the weight vector  is given by

( 5.43)

The local gradient for neuron j in layer l is defined as

( 5.44)

Hence (5.42) may be written in the familiar form

( 5.45)

Case 1: Output Layer Weights. 

( 5.46)

Case 2: Hidden Layer Weights. For a hidden layer, we use the chain rule, expanding over all Nl+1

inputs s(l+1)(n) in the next layer. However, instead of expanding over all time as is done in [47], the

expansion is only done at time k=n since we are only concerned with the instantaneous error.
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( 5.47)

Recall that

( 5.48)

where T(l) is the number of delays in the FIR sections in layer l. Thus for the instantaneous case we

obtain

( 5.49)

Algorithm 1: Instantaneous Gradient. Substitution of (5.49) into (5.47), we get the delta update

for the hidden layer,

( 5.50)

This can be considered an approximate instantaneous gradient. The δ terms are calculated using

standard backpropagation through the first weight of each FIR synapse, and the rest of the coeffi-

cients are ignored.
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Algorithm 2: Accumulated Gradient. A different form is achieved if the gradient is calculated

over a short time window  by delaying the calculation of the gradient until all contri-

butions from feedforward delay elements can be combined.

( 5.51)

( 5.52)

where the quantities and define the length of the accumulated gradients,

defined by

( 5.53)

( 5.54)

In this case, the backpropagated error is obtained from a backward filter, and all the coefficients up

to the nw
th coefficient will have an influence on the δ value. Figure 5.23 illustrates this process.

Algorithm 1 was first proposed by Back and Tsoi [49]. The tapped delay line in the FIR synapse

allows a number of options in calculating the gradient. However, the gradient can be obtained from

an instantaneous estimate, i.e. using only the first weight in the backward filter, or from T(l) delay

sections, i.e. using the entire FIR synapse. It may be observed that Algorithm 1 is just a special

case of Algorithm 2, since it can be obtained by fixing the gradient window parameter nw=1. How-

ever, rather than fixing nw=1 as is done in [49], the value of nw in the above derivation is allowed

to assume any value between 1 and T(l) and thus offers an additional degree of flexibility not

offered in the algorithm presented in [153]. 
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Modification for the Variable Activation Function. The inclusion of a variable activation func-

tion can be done in the same manner as outlined in Section 5.5. The adaptation of p is done accord-

ing to the stochastic gradient update:

( 5.55)

( 5.56)

Essentially, the derivative of the activation function is computed with respect to p and then it is

multiplied by the filtered delta vector, which is the quantity in brackets. Equation (5.56) has the

same format as (5.27) with the exception deltas and weights are now vector operator due to the

FIR synapses.

Summarizing, the complete adaptation algorithm for the parameter updates can be expressed as

follows;

FIR MLP Algorithm with Variable Activation Functions:

Step 1: Initialization. Set all synaptic weights in the input layer to zeros, and all other weights and

threshold levels to small random numbers that are uniformly distributed.

Step 2: Forward Computation. For all training samples, compute the activation potentials and

outputs of the networks forward layer by layer using the following equations:
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( 5.57)

Compute the output of node j in layer l using;

( 5.58)

Compute the error signal e(n) produced at the output layer (i.e. l=L) of the network;

( 5.59)

Step 3: Backpropagation of Errors. Compute the local gradients δ’s and ξ’s of the network by

proceeding backward, layer by layer:

( 5.60)

( 5.61)

where and  are vectors of length .

Step 4: Update Parameters. 

( 5.62)
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( 5.63)

The value of  should be clamped above 0 for the sigmoid of equation (5.28) and

between 0 and 1 for the sigmoid function of equation (5.12). If the values of are fixed (i.e. not

updated) and nw is set equal to T(l) for all sections, the above algorithm defaults to the instanta-

neous cost accumulated gradient algorithm proposed in [153].

5.6.3  Simulation Results

In this section we apply the proposed structure to the identification of  a nonlinear system as shown

in Figure 5.24  with the following parameters: Number of taps in first FIR section = 5, the activa-

tion function used was defined by equation (5.12) with parameter p =0.5, and the number of taps in

the 2nd FIR section is 10.   Both of the FIR sections have the weights and biases randomly

assigned.
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FIGURE 5.24  System identification using the proposed model.
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Three structures were tested. The first structure (called ‘FIR’) is a conventional FIR structure con-

sisting of 15 taps with the inclusion of a bias weight to compensate for output bias. Fifteen taps

were chosen to accommodate the impulse length of the “unknown” system. The normalized step

size alpha was set to 0.1 and it was trained with the NLMS algorithm. 

The second structure tested (called ‘IC’) consists of two FIR sections with a fixed sigmoidal acti-

vation function between them, essentially  equation  (5.12) with p=0. The number of taps is the

FIR sections is set to 5 and 10 respectively, and the gradient accumulation nw is set to 1. This is

equivalent to IC-2 in [153].The normalized step size alpha was set to 0.1.

The third structure is the proposed architecture with variable activation function and gradient accu-

mulation. It has a similar architecture to the second structure except we allow the activation func-

tion to adapt parameters p according to the proposed training algorithm, and set the gradient

accumulation window nw to 1 or 3. The normalized step size alpha was set to 0.1. This algorithm is

called ‘ICVA’.

The training sequence consists of 8000 randomly generated data points.  For all the algorithms, the

normalized mean square error (NMSE) is plotted according to the formula;

( 5.64)

where  and  represent the averaged error and desired signals  and r represents the

window values over which these averages are then smoothed, in this case equal to 500.  The con-

vergence results are shown in Figure 5.25 .The FIR structure trained with the NLMS algorithm is
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clearly unable to identify the unknown system accurately, and obtains an average NMSE of only --

11 dB. Both the IC structure and ICVA structure with nw=1 perform considerably better than the

FIR structure. The ICVA structure is able to achieve a slightly faster convergence in the 0-2000

iteration range, and both converge to approximately -24 dB NMSE. By increasing the gradient

accumulation window, an increase in convergence speed is seen to occur. With nw=1, ICVA

achieves -20 dB NMSE after 1500 iterations. With nw=3, the same NMSE is achieved after only

1000 iterations. 

5.6.4  Experimental Results

HFT #6 in Conference Room #2. The ICVA architecture is applied to experimental data collected

in this venue. Two different architectures are evaluated. The first architecture is similar to that

shown in Figure 5.24  and has 150 taps in the first FIR section, followed by 850 taps in the second

FIR section. The gradient accumulation window is equal to 100, the normalized step size = 0.5 and

FIGURE 5.25 Comparison of convergence using the proposed algorithms.
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the adaptive parameter step size is 0.01. The sigmoid of equation (5.28) is used. This architecture

is called “150/850 ICVA”. The second architecture is simplified by using a single variable activa-

tion function in front of a 1000 tap FIR structure, i.e. the first FIR section is absent. This architec-

ture is called “0/1000 ICVA” and has the same parameters as the first architecture. Note that this

architecture is almost identical to a conventional FIR structure, however, it is still necessary to use

the temporal backpropagation algorithm due to the TDL in the FIR portion.

The results shown in Figure 5.26 (a) indicate that the 150/850 ICVA obtains a lower converged

ERLE with respect to the conventional two layer TDNN (see for comparison results in Figure

5.13) but obtains a converged ERLE approximately 1 dB better than the conventional TDNN at 95

dB SPL. The 0/1000 ICVA structure obtains 2 to 3 dB better performance than the FIR model at

SPL levels between 60 and 70 dB, but is worse at other volumes. 

FIGURE 5.26  Experimental results. HFT #6 in conference room 2 showing a comparison of FIR,
VA-FIR MLP using 150/800 taps in first/second FIR sections, and simplified VA-FIR MLP with
only one FIR section following adaptive sigmoid. 
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5.6.5  Discussion

Simulation results presented in Section 5.6.3 illustrate the improved convergence can be obtained

by utilizing an adaptive activation function with gradient accumulation window. The proposed

structure can be considered as a new alternative architecture to conventional MLPs which utilize

fixed sigmoidal activation functions only. By selecting the size of the gradient accumulation win-

dow, a trade-off between convergence performance and complexity can be achieved, and that for

low order systems, the gain is impressive. Plots of the converged MSE also show that the excess

MSE is higher when gradient accumulation is used, compared to when the accumulation is not

used, i.e. nw=1. The experimental results presented in Section 5.6.4 indicate that the proposed VA-

FIR-MLP structure is not as good as the conventional TDNN utilizing an adaptive activation func-

tion (See Section 5.5.3). As well, the performance at low volumes does not equal that of the linear

FIR, although at medium and high volumes it is 1-2 dB better. 

5.7  Summary 

This chapter has addressed methods to combat nonlinear loudspeaker distortion in AEC’s, by the

application of some known and newly proposed nonlinear structures. In Section 5.1 results using a

3rd order Volterra structure are presented. The following conclusions can be summarized:

• Although the Volterra filter can obtain a high degree of modelling accuracy in simulation exam-

ples (for example 10’s of dB better than a linear model), the performance obtained using exper-

imentally obtained data was typically only one or 2 dB better than the linear models. 

• The convergence is slow since the number of taps required to accurately model a physical HFT

is large (several tens of thousands).

The TDNN was proposed as an alternative nonlinear model in Section 5.2 since it has the ability to

generalize a wide range of nonlinear functions, and does not suffer from the curse of dimensional-
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ity. The following conclusion can be made:

• Several computer examples showed that the simulated performance gains of the TDNN struc-

ture would not be as significant as obtained with the Volterra filter.

• When applied to experimentally obtained data, the TDNN models attained up to 5.6 dB higher

converged ERLE than the Volterra models (Refer to Table 5.1). 

• Structures with a single hidden layer with a small number of hidden nodes (i.e. one or two) are

adequate for modelling the AEC process. In terms of complexity, this is welcome news, since

the number of weights is a multiplicative function of the number of nodes between layers.

• A mixed linear sigmoid activation function was subsequently developed and it was demon-

strated that by varying the linear range, several dBs of improved ERLE could be obtained

(Refer to Figure 5.10 ). 

• A TDNN is capable of several dB’s of improvement in converged ERLE in the undermodelled

case1 compared to an FIR structure with an equivalent number of taps in the TDL as measured

using HFT #3 (Refer to Figure 5.14 ). 

The conventional TDNN also has some detrimental effects, for example, poorer performance than

the FIR structure at low and medium volumes. As a result, several new TDNN based architectures

were developed to try to mitigate some of the problems associated with the conventional TDNN. 

A new structure for nonlinear AEC, the two stage neural filter, was presented in Section 5.4. 

• A simple gradient based learning algorithm was presented which has a complexity of

 operations per iteration, where n1 and n2 refer to the lengths of the TDLs in

the nonlinear and linear sections respectively.

• Experimental results on HFT #6 indicate that this new structure is capable of 3 dB improved

ERLE at the low volumes, and up to 11 dB improvement at high volume ranges, compared to

the equivalent length FIR structure

1.  Typically the TIP/TP ratio (see Section 4.4.2) is the limiting factor for undermodelled linear systems, 
however, it appears that for nonlinear systems, this may not be the case.

2 n1 n2+( ) 22+
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• The performance of proposed structure matches the linear FIR structure in the medium volume

range.

It was demonstrated in Section 5.2 that by varying the linear region of the mixed linear-sigmoid

activation functions, improved performance could be obtained. This was the motivation for devel-

oping a the VA-TDNN structure using a fully adaptive activation function, as discussed in Section

5.5. The VA-TDNN structure obtains the best overall performance of all the models tested on the

experimental data (See Figure 5.20 ).

Finally, in Section 5.6, the VA-FIR-MLP was presented as a method for identification of cascaded

nonlinear/linear/nonlinear systems. Computer simulations showed the efficacy of this model for

the identification of low-order nonlinear cascaded systems, however the experimental results show

that it is not as effective as the methods presented in the previous sections, although some gains

could be obtained in the high volume ranges.

All of the structures developed in this chapter were tested using filtered noise as the input, even

though the final application is for nonlinear acoustic echo cancellation, where the input signal is

speech. It is well known that instantaneous gradient based learning algorithms suffer from slow

convergence when coloured signals like speech are applied. In this chapter, the main performance

criterion is the the steady-state ERLE value, so given sufficient training time, filtered noise was an

appropriate input. However, for applications using speech as the input signal, it is necessary to

invoke nonlinear training algorithms that are less sensitive to the characteristics of the input sig-

nals. This is the focus of Chapter 6.
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Chapter 6
Conjugate Gradient Methods for 
Improved Performance

In previous chapters it was shown that several TDNN based structures can be applied to improve

the overall steady-state MSE. However, the convergence rate in general was not as fast as the FIR

structure trained with the NLMS algorithm. In this chapter, a new training algorithm is developed

to improve the convergence rate without affecting the tracking ability. The algorithm is based on

the fast conjugate gradient (FCG) algorithm which is modified for application to MLPs using the

gradient backpropagation algorithm. In Section 6.1 the linear FCG algorithm is presented and then

extended to neural networks. It is then used on the two stage neural filter developed in Section 5.4

and applied to both simulated and experimental data, including speech, to illustrate the perfor-

mance advantages that can be obtained. 

In Section 6.2, a variation on the FCG algorithm employing gradient reuse and a variable step-size

line search algorithm is presented. This variation is for linear structures only. Section 6.2.9 pre-

sents a summary and discussion of the results.
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6.1  Fast Conjugate Gradient Backpropagation

The conventional backpropagation (BP) algorithm presented in Section 3.7.1 is probably the most

widely used supervised learning algorithm in neural network applications. However, with a large

number of weights, the BP learning time is excessively long and its use become impractical. The

conjugate gradient algorithm is well suited for the neural network learning problem since it is fast,

simple and requires little additional storage space (only the current and previous gradient and

search vectors and weights must be stored). The CG method speeds up the BP learning time signif-

icantly and does not suffer from the inefficiencies and possible instabilities that arise using the BP

with a fixed step size. In fact, the CG algorithm has been found in some studies [71] to be an order

of magnitude faster than the conventional BP using momentum.

Partial CG methods introduced in Section 3.4 allow further simplification of the CG algorithm by

restricting the weight updates for a number of iterations k<m, where m is the filter order. Partial

CG algorithms provide a stepping point for the formulation of fast (i.e. numerically less intensive)

versions of the CG algorithm. 

6.1.1  Fast Conjugate Gradient Algorithm for Linear Adaptive Filters

Boray and Srinath [73] recently developed a fast conjugate gradient algorithm (FCG) for linear

adaptive filtering using an averaged instantaneous gradient over a window of past sample values.

They showed that the advantages of this windowed approach are (i) better tracking and conver-

gence is achieved in nonstationary environments with correlated data compared to the RLS algo-

rithm, and (ii) there are no stability problems associated with an exponential forgetting factor as in

the RLS algorithm. The CG algorithm achieves convergence speed comparable to the RLS algo-

rithm even when the input signal autocorrelation matrix is ill conditioned [73]. However, the CG
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computational burden is still high compared to variations based on the LMS algorithm [154] hence

the FCG algorithm is a welcome method to simplify the CG further.

In the conventional CG algorithm the gradients are normally calculated as true gradients meaning

that at least m conjugate directions can be calculated, and that all the training data is available for

calculation of the gradient. However, in real time filtering and system identification an on-line

method of approximating the gradient is required. If we use an instantaneous gradient estimate, as

is done in the LMS algorithm, the CG algorithm will terminate in one step and essentially defaults

to the LMS algorithm. This is because there will not be any more directions conjugate to the initial

direction vector. However, a better approximation to the gradient can be obtained by calculating

the estimate based on a window nw of past values of inputs [73]. The algorithm tries to minimize a

partial cost function constructed by summing nw instantaneous cost functions using the current

weight vector w(n);

( 5.65)

It can be shown [73] that there will be at least min(m,nw) linearly independent direction vectors in

the gradient estimate, where m is the filter order. Specifically the instantaneous gradient estimate

at time n is replaced by a windowed estimate as follows;

( 5.66)

The linear FCG algorithm the same as that listed in Section 3.4.4 except that the computation of

 is done according to (5.66) and the iteration count is terminated when k=nw. 
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Simplification of the FCG algorithm. The computation of the optimum step size αk in (3.44) still

requires 2mnw multiplies and one division. By removing the calculation of αk and replacing it with

a constant value, the calculation of p and y are also no longer required, thus simplifying the algo-

rithm further. However, instead of using a fixed step size as proposed in [73], a normalized step

size is used in all subsequent simulations, defined by

( 5.67)

where  and ε is some small value. This slight variation of the algorithm is used in all the

simulations. It should be pointed out that by avoiding the calculation of αk at each iteration, there

is no guarantee that the successive direction vectors will be truly conjugate. This will result in

reduced convergence rates over that of the CG algorithm. The FCG algorithm for linear FIR filters

is summarized below:

Fast Conjugate Gradient Algorithm for Linear FIR Filters: 

Initialization: w0(0)=0

For each iteration n, do steps 1,2 and 3.

Step 1: 

a) Starting with an initial weight vector w0(n) compute the following;

( 5.68)

b) set 
c) compute the normalized step size according to (5.67)

α̃ n( ) α

xT n( )x n( ) ε+
----------------------------------=

0 α 2< <

g0 n( ) ∇f w0 n( )( )[ ]=

d0 n( ) g0 n( )=
α̃ n( )
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Step 2: 

Repeat for k=0,1,. . . ,nw-1

a) set  
b) Compute the gradient estimate at the new weight vector wk+1(n)

 ( 5.69)

(c) Unless k=nw-1, obtain the new direction vector
( 5.70)

where ( 5.71)

and repeat Step 2 (a).

Step 3:

Replace w0(n) by wm(n) and go back to Step 1.

6.1.2  Extension of the FCG Algorithm to Neural Networks

We can extend the FCG algorithm to the nonlinear case, for neural networks. The nonlinear FCG

(NFCG) algorithm is similar to the algorithm presented in the previous section. The differences are

(1) the network is nonlinear (2) the errors must be computed for hidden layers and not just the out-

put layer (3) the previous values of the hidden layer outputs must be retained as well as the output

layers in order to compute the windowed gradient. The cost function to be minimized takes the

form of equation (5.65) however, the vector w(n) is now an Mth order supervector defined by 

( 5.72)

where
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( 5.73)

is the weight vector connecting layer l to layer l+1 at time (n), M equals the total number of

weights in the network and L is the total number of layers in the network. The windowed gradient

vector is also now of length M, with individual elements corresponding to

the weights listed in equation (5.73).

The gradient is computed using the average squared error of a window of training input/output

pairs. Similar expressions for the CG and BP algorithms have been developed by several authors,

including Charlambous [72], Johansson et. al. [71], as well as Adeli and Hung [155]. However,

these expressions are based on the batch training mode using the full set of input/output pairs, and

not the windowed method proposed here. 

Errors are backpropagated to previous layers in the same way as the conventional BP algorithm.

The important point is that the window is moved for each new sample of the input that comes in

i.e. it is a sliding window of past input/output pairs. The NFCG is summarized below;

Nonlinear FCG (NFCG) Algorithm

Initialization:  Set weights and biases to random values between -1 and +1..

For each iteration n, do Steps 1,2, and 3.

Step 1.  a) Starting with an initial weight vector w0(n), compute the following;

( 5.74)
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b) set d0(n) = -g0(n)

c) compute the normalized step size parameter α according to;

( 5.75)

Note that  could be replaced by a fixed step size here if desired;

Step 2.  Repeat for k=0,1,. nw-1 where nw ≤ m

a) set wk+1(n) = wk(n) + αdk(n)

b) compute an estimate of the gradient at wk+1(n);

( 5.76)

c) Unless k=nw-1, set   dk+1(n)= - gk+1(n) + βkdk(n),where;

( 5.77)

Note that if βk > 1, go directly to Step three.

Repeat Step 2 a).

Step 3. Replace w0(n) by wk (n) and go back to Step 1.

ginst(n-i) is the instantaneous gradient calculated with the current network weight vector w0(n) and

past inputs u(o)(n-i) and d(n-i). Both ginst(n-i) and w0(n) are vectors of length M, where M is the

total number of weights in the network. The calculation of individual elements of the instanta-

neous gradient vector  is done by performing the following steps;
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( 5.78)

where  is the instantaneous gradient from the data i time steps in the past for weight

 in the l-th layer, and;

( 5.79)

( 5.80)

Note that  represent the nonlinear output of the neural network at

time n using the current weight vector with past input vectors . An illustra-

tion of the terms is shown in Figure 3.7 and Figure 3.8. 

Complexity. The choice of nw =1 implies no averaging in the gradient estimate and the NFCG

algorithm reverts to the BP algorithm. For higher values of nw the complexity approaches that of

algorithms that use the second derivative for obtaining the optimum step size and direction which

have complexity O(m3)[74]. The complexity of the NCG algorithm is O(mnw
2) since in Step 2, the

weights are updated nw times per iteration and the calculation of the averaged gradient is O(mnw).
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6.1.3  Computer Simulation

In this section, we apply the NFCG algorithm to the identification of a nonlinear system con-

structed by generating a signal which is hard limited and convolved with an exponentially decay-

ing 50 tap impulse. The system is illustrated in Figure 6.1. The input signal x(n) is obtained by a

first order autoregressive (AR) process according to;

 ( 5.81)

where v(n) is a unit variance white noise sequence. The hard limiter has a linear region up to 0.5,

beyond which the output is clipped with a slope of 0.2. Two hundred independent trials are used in

the averaging of the normalized MSE. 

The results in Figure 6.2 show that for the AR input, the NFCG algorithm converges at a rate much

faster than the conventional BP algorithm, depending on the size of the gradient averaging window
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weights

50 Tap TDL

FIGURE 6.1 System identification model.
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nw. The larger the choice of nw, the higher the convergence rate. The final misadjustment is

approximately -18 dB for all cases.

Convergence Rate Improvement. The convergence rate improvement is not a linear function of

the window size. For example, the BP algorithm, which is equivalent to the NFCG with nw=1,

takes approximately 1400 iterations to reach -15 dB NMSE. For window sizes nw=2, 5, and 10, the

number of iterations required to reach the same NMSE are approximately 600,200 and 150 respec-

tively. As a result, it can be seen that the convergence rate improvement becomes progressively

smaller for large window sizes, and that for nw>5, the convergence rate improvements are small.

FIGURE 6.2 Simulation results showing the averaged NMSE performance of the BP and NFCG
algorithms with nw=2, 5, and 10 for the system identification model of Figure 6.1. Two hundred
independent trials are used in the averaging process
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6.1.4  Experimental Results

In this section two experiments are performed using data collected from actual LREM and HFT

components. In the first experiment, a filtered noise signal is applied to loudspeaker SPK#2 (refer

to Appendix B) which is mounted in a standard baffle and placed inside an anechoic chamber. This

is the reference signal. The primary signal is picked up by MIC#1. The primary and reference sig-

nals are then applied to a conventional TDNN structure which is trained with the BP and NFCG

algorithms.

In experiment #2, data is collected inside Conference Room #2 using HFT#6. Real speech signals

are applied as the reference signal. The primary and reference signals are then applied to the two

stage neural filter (See Section 5.4) which is trained with the BP and NFCG algorithms. For com-

parison purposes, the performance of an FIR filter trained with the accelerated SFTF algorithm

(see Appendix D.5) is also shown. The accelerated SFTF algorithm is used to remove the long

training time associated with LMS based training algorithms when using speech inputs, which

may be as long as 10 seconds [156].

Experiment #1, Noise Input. The volume is 100 dB SPL as measured at 0.5 meters from the loud-

speaker. The microphone is placed 15 cm. from the loudspeaker output. The signals are sampled at

16 kHz and are later transferred to a computer for off-line analysis. Two adaptive filter structures

were tested to identify the system (i) a 150 tap linear transversal filter trained using the NLMS

algorithm (ii) a 3 layer TDNN with 150 input taps trained with both the BP and NFCG algorithms.

The experimental results shown in Figure 6.3 show the results for all cases. The NLMS has fast

convergence but is incapable of obtaining an ERLE of greater than 19 dB due to the nonlinear

loudspeaker. The TDNN trained with the BP algorithm is capable of identifying the system more

effectively and achieves 25 dB ERLE but the initial convergence is much slower than the NLMS
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algorithm. Training the TDNN using the NFCG with a window size nw=5 results in convergence

speed equivalent to the NLMS structure as well as obtaining 24 dB ERLE.

Experiment #2, Speech Input. The average volume of the speech signal as measured 0.5 m from

the loudspeaker is 95 dB SPL, which is a comfortable listening level 6-10 ft. from the HFT. The

HFT is placed in the middle of the conference table. The parameters are listed in Table 6.1.

TABLE 6.1  Experiment #2 parameters.

Item Parameters
Data 160,000 samples @16 kHz sampling. 95 dB SPL aver-

age volume at 0.5 m.
FIR Trained with Accelerated SFTF N=600, λ=0.9998, acceleration factor=0.95, soft initial-

ization constant=200.
Two stage neural filter trained with 
NFCG algorithm

N1=150, N2=450, number of hidden nodes=1, neural 
network normalized step size α=0.5, nlms step size 
α=0.5,window size nw=5 for TDNN section
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FIGURE 6.3 Experiment #1 results comparing converged ERLE curves of a 150 tap FIR 
structure trained using the NLMS algorithm with that of a TDNN trained with the BP and 
NFCG algorithm.
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Figure 6.4 shows the speech signal amplitude as a function of time. The converged ERLE results

shown in Figure 6.5 and Figure 6.6 indicate that the proposed structure/algorithm outperforms the

FIR structure trained with the accelerated SFTF algorithm by approximately 5 dB.

FIGURE 6.4 Reference signal speech signal.
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FIGURE 6.5 Experiment #2 results. Converged ERLE results with speech input. Gaps show 
where pauses in speech are located.
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FIGURE 6.6 Experiment #2 results. Close up of speech period between 6 and 8 seconds. The two 
stage neural filter trained with proposed algorithm achieves approximately 5 dB higher ERLE 
that the FIR filter trained with stabilized SFTF algorithm.
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6.1.5  Discussion

The results presented in this section have shown that the NFCG algorithm is capable of improving

the convergence rate of neural network based adaptive filters. When applied to the two stage neu-

ral filter from Section 5.4, the NFCG algorithm achieves a 5 dB improvement in ERLE compared

to the accelerated SFTF algorithm when trained with real speech signals at loud volumes where

loudspeaker nonlinearities become significant. Simulation results in Section 6.1.3 also indicate

that by varying the size of the gradient window nw, we can obtain improved convergence speed

with a corresponding increase in complexity. A window size of nw=5 was found sufficient to speed

the initial convergence rate of the two stage neural filter to be no worse than the linear FIR trained

with the NLMS algorithm, when applied to data collected from a loudspeaker/microphone placed

in an anechoic chamber.

One of the important features of the NFCG algorithm is that the gradient window can be made

arbitrarily small to “tailor” the algorithm to a particular application. Thus, where a modest increase

in convergence is desired without compromising tracking ability, a small nw can be chosen. Low

values of nw will result in slower convergence, however, the advantages are reduced complexity

and faster tracking capability. This is important for AEC applications where reduced complexity is

of utmost importance. It has been shown that linear algorithms based on instantaneous gradient

LMS type updates have superior tracking ability compared to faster algorithms based on least

squares minimization [95]. The performance of partial CG algorithms falls between algorithms

based on instantaneous and full gradient (i.e. least squares) methods [70]. Hence, as the window

size becomes large and the convergence improves, the dynamic tracking performance will suffer. It

is therefore reasonable to assume that a similar performance trade-off will be noticed in extensions

of CG methods to the nonlinear domain, like the NFCG. 
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6.2  Conjugate Gradient Reuse Algorithm with Dynamic Line Search

The fast CG algorithm presented in Section 6.1.1 was obtained by substituting the optimum step

size αk with a fixed step size, thus avoiding the computation of the difference vector yk(n) and its

gradient pk(n). It is possible however, to estimate a reasonable value of αk using an inaccurate

line search technique.

In this section a new linear algorithm which is presented which combines the FCG algorithm and

the Modified Variable Step Size (MVSS) algorithm [55] to provide a convergence/tracking perfor-

mance/complexity trade-off. The MVSS algorithm is used to perform an inaccurate one dimen-

sional line search along the conjugate direction vector dk(n) at each iteration k. By selecting an

appropriate number of steps performed during the line search, it is possible to achieve the same

performance as the FCG algorithm but using a smaller window size, and therefore reduced com-

plexity. This algorithm is called the Variable step size CG (VCG) algorithm.

A simplified version of the VCG algorithm is also presented that reuses weight updates (i.e gradi-

ent reuse) to avoid calculating gradients and conjugate directions at every sample n. This simpli-

fied algorithm only invokes the conjugate gradient update every Pth sample resulting in an overall

complexity reduction by a factor of P as compared to the FCG algorithm. This new algorithm is

called the conjugate gradient reuse (CGR) algorithm. 

Simulation results show that improved convergence and tracking is obtained compared to the

NLMS, RLS, FCG and MVSS algorithms when the input data is correlated and the environment is

nonstationary. 
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6.2.1  Inaccurate Line Search

There are two kinds of line searches, accurate line searches and inaccurate line searches. Accurate

line searches are very attractive theoretically, however, they are very expensive to carry out and the

algorithm may spend a considerable amount of computing effort locating the exact minimum point

on a descent direction. 

Typically, an accurate line search involves bracketing or straddling the minimum and then using a

cubic interpolation algorithm to determine the exact minimum [71]. A stochastic line search algo-

rithm has been presented in [157] which recursively minimizes the sum of squared errors on a lin-

ear manifold. It is similar to fast RLS algorithms since it iteratively calculates the optimum step

size parameter. Other line search techniques such as the scaled conjugate gradient (SCG) algo-

rithm [158] have been proposed in the literature, however, all the aforementioned accurate line

searches are formulated for full gradients and do not work for partial CG methods. 

Inaccurate line searches typically terminate a search before it has converged. Several popular tech-

niques are Armijo’s Rule [159] and the Goldstein Test [70]. The basic idea is to guarantee a proper,

namely not to large and not too small, step size is selected. The FCG algorithm is the extreme case

of an inaccurate line search, where only a single fixed step is taken toward the minimum. The

MVSS algorithm may also be applied as an inaccurate line search algorithm and this is described

next. 

6.2.2  The MVSS Line Search Algorithm

The MVSS algorithm [55] is a variable step size (VSS) LMS type algorithm that dynamically

adjusts the step size during the search for the minimum of a performance surface. The MVSS cal-

culates at each iteration a step size based on the autocorrelation of adjacent error samples. When
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the error correlation is large, dynamic step size control adjusts the step size to be large thus speed-

ing up the convergence. Thus, when the filter is far from the optimum and the autocorrelation of

the error signal is large, the step size is large. This has the effect of reducing the number of itera-

tions needed to find the minimum of a particular conjugate direction by increasing the line search

step size where appropriate and in this respect is similar to the line search algorithm in the SCG

algorithm and Armijo’s rule. Specifically, the step size is updated by the following formulas;

( 5.82)

where ( 5.83)

and ( 5.84)

The parameter γ controls the convergence time. The parameter ζ controls the averaging of the step

size update and  Γ controls the averaging time constant of the filtered error update. The parameter

ρ gives a short time estimate of the error signal autocorrelation. Typical parameter values are

ζ=0.97, Γ=0.99, γ=1e-5 [55]. The advantage of the MVSS algorithm over the standard VSS algo-

rithm is its relative insensitivity to noisy signals due to the time average autocorrelation process.

This technique is adopted in the FCG algorithm to dynamically control the step size update during

the line search. A measure of the “minimum” of the line search can be obtained by examining e(j)

and e(j-1) where j is the line search iteration count. If then the algorithm is still

searching for the minimum of the performance surface along this particular direction. If
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 then the minimum has been reached, at which point we exit the search and

replace the initial weight vector wo with the one used to generate e(j-1). 

6.2.3  Maximum and Minimum Step Sizes

Due to the inaccuracy of the line search, the step size αk will not be exact and the direction vectors

dk will not be Q-conjugate. For general nonlinear problems, an indication that the algorithm is get-

ting stuck, or near the minimum, is that very small steps are being taken. Subsequently orthogonal-

ity between successive gradients is lost,  [71] and it is possible that the calculation of βk

will be close to or larger than 1 and cause instability.

Proakis [160] demonstrated that the conventional CG algorithm resembles the operation of a first-

order recursive filter whose output dk is given by equation (5.70). An m-dimensional filter is in

effect a set of m identical single-pole (low pass) filters operating in parallel which corresponds to

filtering the gradients with a time-variant filter. This can provide faster convergence than the con-

ventional LMS algorithm, however, if βk is close to or larger than 1, as may happen with partial

CG methods using inaccurate line searches, successive iterations will only serve to move the

weight vector away from the optimum value and make the algorithm unstable. Proakis found it

necessary to limit the value of  βk < 1 in a channel equalization experiment and obtained the condi-

tions for stability which can be expressed as follows [160];

( 5.85)

where  and λmax is the maximum eigenvalue of the input data. Specifically, the gradi-

ent averaging extends the upper limit of the region of stability of µk from 2/λmax to 2(1+βk)/λmax

but  βk must be kept below 1. 

e j( ) e j 1–( )≥

gk 1+ gk≈

0 µk
2 1 βk+( )

λmax
-----------------------< <

0 βk 1< <
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In [161] Shanno shows that the use of inaccurate line searches using the Polak-Ribiere or Fletcher-

Reeves method may yield conjugate directions dk which are not descent directions, resulting in

numerical instability. A method for calculating dk is derived which guarantees a descent direction.

Since Shanno’s method is not used here for computing successive dk, the maximum step size

boundary in (5.85) is checked each iteration and then a limit  is imposed on the mini-

mum step size. 

6.2.4  Variable Step Size CG Algorithm using MVSS Line Search

The complete algorithm is summarized below and uses triply indexed parameters. The parameter n

refers to the main iteration number, where the data is shifted in on a sample by sample basis, k rep-

resents the conjugate direction iteration count and j represents the line search iteration count.

Conjugate Gradient Algorithm with MVSS Line Search (VCG)

Initialization: w0(0)=0, βk(0)=0.

For each iteration n, do steps 1,2 and 3.

Step 1:
1a) Shift in new data into vector x(n)

1b) Starting with an initial weight vector w0(n), compute the initial error;

( 5.86)

1c) Compute the maximum step size according to

( 5.87)

µmax 10⁄

e n( ) w0
T n( )x n( ) d n( )–=

µmax n( )
1 βk n( )+

xT n( )x n( )
-------------------------=
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1d) Compute the initial windowed gradient estimate;

( 5.88)

1e) set d0 (n)= -g0(n)

Step 2: Repeat for k=0,1,. nw-1 where nw ≤ m

2a) set  and 

Repeat Steps 2b-1) through 2b-4) for j=1,. nw where nw ≤ m 

2b-1) Set 

2b-2) Compute the new error output using
( 5.89)

2b-3) Adjust the step size 

( 5.90)

where ( 5.91)

2b-4) if  then proceed to Step 2c), else goto Step 2b-1).

2c) restore the “optimum” weight vector  for this direction.

2d) Unless k=mw-1, set   ,where;

g0 n( ) ∇f w0 n( )( )[ ] 2
nw
------⎝ ⎠

⎛ ⎞ w0
T n( )x n i–( ) d n i–( )–[ ]x n i–( )

⎩ ⎭
⎨ ⎬
⎧ ⎫

i 0=

nw 1–

∑==

µk 0, n( ) µmax n( )= wk 0, n( ) wk n( )=

wk j, n( ) wk j 1–, n( ) µk j, n( )dk n( )+=

ek j, n( ) wk j,
T n( )x n( ) d n( )–=

µk j, n( )

µmax n( ) µk j, n( ) µmax n( )≥;

µmin n( ) µk j, n( ) µmin n( )≤;

ζµk j 1–, n( ) γρj
2 n( )+ µmin n( ) µk j, n( ) µmax n( )< <;

⎩
⎪
⎪
⎨
⎪
⎪
⎧

=

ρj n( ) Γρj 1– n( ) 1 Γ–( )ej n( )ej 1– n( )+=

ek j, n( ) ek j 1–, n( )>

wk 1+ n( ) wk j, n( )=

dk 1+ n( ) g– k 1+ n( ) βk n( )dk n( )+=
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 and ( 5.92)

( 5.93)

I f βk (n) > 1, go directly to Step 3), otherwise go to Step 2) 

Step 3. Replace w0 (n+1) by wk(n), and go back to Step 1.

The MVSS line search is performed in Step 2b-1) where the newly computed direction vector dk is

used to successively update wk. 

Note that  only during the first iteration of the line search

when k=0 and that during successive iterations, dk will change. We have imposed an allowed limit

of nw steps of loop 2b) to reach the minimum of a particular conjugate direction during the line

search. This factor was chosen to place a limit on the number of steps taken should the direction

estimate be in the wrong direction. If the minimum of a particular conjugate direction has not been

reached before the next conjugate direction is calculated, or if the gradient estimate is poor, there is

no guarantee that the new directions will be conjugate with respect to one another. This will slow

convergence, however, it is still superior to the NLMS algorithm.

βk n( )
gk 1+

T n( )gk 1+ n( )

gk
T n( )gk n( )

------------------------------------------=

gk 1+ n( ) ∇f wk 1+ n( )( )[ ]=

2
nw
------⎝ ⎠

⎛ ⎞ wk 1+
T n( )x i( ) d i( )–[ ]x i( )

⎩ ⎭
⎨ ⎬
⎧ ⎫

i n nw– 1+=

n

∑=

dk n( ) g– k n( ) ∇f wk n( )( )[ ]–= =



6.2 Conjugate Gradient Reuse Algorithm with Dynamic Line Search 171 

6.2.5  Gradient Reuse

The VCG provides an averaged gradient which also points in the optimum direction towards the

minimum of the performance surface based on the available information in the gradient window. If

we assume that the performance surface does not change too rapidly, then it is safe to assume that

by reusing the conjugate gradient updates (as opposed to conjugate direction updates), we can still

step in the right direction and at the same time avoid the calculation of the true gradient. If we only

allow a gradient calculation every P input samples, we obtain a reduction in the complexity by a

factor of P over the VCG. This is the basis of the VCG algorithm with gradient reuse (VCGR). A

variation of this idea was proposed by Hush and Salas [162] for reducing the computational com-

plexity of backpropagation weight updates in neural networks where they showed that the conver-

gence rate speed-up or slow-down is a related to the reuse rate. It is also possible to reuse the

weight updates several times per sample iteration n, i.e. P<1, however for the application

described here, we only update the weights once per sample with a gradient calculation every P

samples. The trade-off is that the convergence rate will become poorer in correlated environments

as P increases. However, it provides a basis for trading computationally complexity for perfor-

mance in the same way as the gradient window size nw. The algorithm is the same as the VCG

except for the following changes which are indicated with an asterisk in bold type;
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VCG with Gradient Reuse (VCGR)

Initialization: w0(0)=0, βk(0)=0.

***count=0;
For each iteration n, do steps 1,2 and 3.

Step 1: 

1a) Shift in new data into vector x(n)
1b) Starting with an initial weight vector w0(n), compute the initial error;

( 5.94)

***count=count+1
***if count=P, continue, else goto Step 3)
Perform rest of Step 1) and Step 2) here

Step 3. 

*** If count=1,
( 5.95)

( 5.96)

*** else
 ( 5.97)

Replace w0 (n+1) by wk(n), and go back to Step 1.

e n( ) w0
T n( )x n( ) d n( )–=

∆wk n( ) wk n( ) wo n( )–=

wo n 1+( ) wk n( )=

wo n 1+( ) wo n( ) ∆wk n( )+=
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6.2.6  Complexity

In the regular CG algorithm, the number of multiplications required in Step 1) is  per gradient

calculation or  total. In step 2), the number of multiplications per sample is 

per sample for an overall total of . In the VCG, the number of multiplications per

sample in Step 1) is . Step 2b is done R times resulting in a complexity of

 multiplications per sample where . Step 2d) is done nw-1 times for a com-

plexity of  multiplications per sample. Summing all of these contribu-

tions, the overall complexity of the VCG is equal to;

  ( 5.98)

multiplications per sample. For R =1 the VCG will default to the FCG algorithm and for nw=1, it

reverts to the NLMS algorithm. The standard RLS algorithm has complexity of (2m2+4m). The

VCG has a slight increase in computational complexity over the FCG algorithm due to the conju-

gate direction reuse rate R. However, if fewer than R successive steps of 2b) are needed before the

minimum is reached, this estimate of complexity would represent an upper bound. It is possible to

limit the value of R to some value smaller than nw to provide a limited complexity increase. Simu-

lation results will show that by using a restricted R, it is possible to obtain the same performance

with the VCG as with the FCG algorithm, even though the latter requires a larger window size to

obtain this performance and is therefore more complex. 

The VCGR algorithm only performs gradient calculations every P samples, and this reduces the

complexity to;

( 5.99)

3m2

6m2 m 6m2 6m+( )

6m3 12m2+

2mnw 1+

nwR 2m 6+( ) R nw≤

nw 1–( ) 2mnw 3m+( )

2mnw 1+( ) nwR 2m 6+( ) nw 1–( ) 2mnw 3m+( )+ +

m 1+( )
2mnw n+ wR 2m 6+( ) nw 1–( ) 2mnw 3m+( )+

P
------------------------------------------------------------------------------------------------------------------+
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multiplications per sample for . For P=1, the simplified algorithm reverts to the VCG.

Table 6.2 gives comparative complexities of the CG, FCG, VCG, VCGR and RLS algorithms for

m=50, nw=5, R=2 and P=3.

6.2.7  Computer Simulations

In this section, we apply the VCG algorithm to the problem of system identification as illustrated

in Figure 6.7. 

TABLE 6.2  Comparison of algorithm complexity.

Algorithm
Mult./sample

Mult./sample 
for m=50, 
nw=5

CG 780,000

FCG 3631

VCG 4161

VCGR 1438

RLS 5200

R 2≥

6m3 12m2+

2mnw 1+( ) nw 2m 6+( ) nw 1–( ) 2mnw 3m+( )+ +

2mnw 1+( ) nwR 2m 6+( ) nw 1–( ) 2mnw 3m+( )+ +

m 1+( )
2mnw n+ wR 2m 6+( ) nw 1–( ) 2mnw 3m+( )+

P
-----------------------------------------------------------------------------------------------------------------+

2m2 4m+

Σ

 

Σ
e(n)

Noise
σN

2

Adaptive

m taps
Filter Unknown

System

+

y(n)

x n( ) 0.9x n 1–( ) 0.2v n( )+=

FIGURE 6.7 System identification model. An uncorrelated noise source with variance σN
2 is 

added to the adaptive filter output y(n) to produce an SNR of 50 dB.

50 exponentially
decaying taps

Noise level set to
obtain 50 dB SNR.
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The unknown system is modelled by an impulse 50 taps long which is obtained from an exponen-

tially decaying set of random values between ±1. This is representative of an LREM obtained in a

highly damped conference room or in automobiles where both fast convergence and tracking are

required. The input to the system is a coloured noise sequence obtained from a single pole autore-

gressive process described by equation (5.81). This signal is then filtered by the unknown system

and finally, a small amplitude uncorrelated white gaussian noise signal is then added to the system

output to produce a desired signal to noise ratio of 50 dB.   In order to demonstrate the tracking

capabilities of the VCG, the unknown system impulse response is changed halfway through the

data sequence by multiplying all coefficients by -1.0. This change in the transfer function will

cause a temporary increase in the mean square error as the algorithms try to readjust the weights to

the new optimum weight vector and gives some measure of the tracking performance of a training

algorithm. Subsequently, the NMSE convergence curves for the RLS, NLMS, FCG, MVSS and

VCG are plotted for comparison. The NMSE curves are obtained by averaging the error and

desired signals over 100 independent runs and then smoothing according to the following formula,

( 5.100)

where  and  represent the averaged error and desired signals averaged over 100

independent trials and r represents the window values over which these averages are then

smoothed, in this case equal to 50. A summary of the parameters used in the simulations is listed in

Table 6.3. 

NMSE n( ) 10

er k( )[ ]
2

r 0=

50

∑

dr k( )[ ]
2

r 0=

50

∑

-------------------------------

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

dBlog=

er k( ) dr k( )
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The ξ parameter for the MVSS is large since the data sequences used are 16 bit integer which have

been normalized with respect to 32768. The window sizes for the FCG and VCG algorithm are

both set to 5 which provides a good performance/complexity trade-off. The minimum step size for

the line search portion of the VCG algorithm was chosen as . The signal to noise

ratio of the desired signal d is set to 50 dB.

Simulation #1, Correlated Input:  Figure 6.8 shows the results when the input is coloured by the

first order autoregressive process described by equation (5.81). During the first part of the training,

the RLS converges quickly owing to its insensitivity to eigenvalue spread. The FCG and VCG

algorithms also converge quickly but the VCG is faster than the FCG algorithm. Both the MVSS

and NLMS have poor convergence characteristics due to the correlated input data. At iteration

1000, the unknown system is changed and the RLS algorithm has problems tracking due to the for-

getting factor λ being close to 1 and only manages to obtain a lower error than the NLMS and

MVSS algorithms by iteration 1500. The VCG and FCG algorithms convergence rates after itera-

tion 1000 are almost identical to the initial convergence rate. The VCG obtains the best conver-

gence rate of all the above algorithms.

TABLE 6.3   List of parameters used for simulations #1, #2 and #3.

Algorithm
#Taps
   m α λ µmax µmin ξ Γ γ nw SNR

NLMS 50 0.5 0.5 50 dB
RLS 50 0.997 50 dB
MVSS 50 1.0 1e-5 0.97 0.99 1e9 50 dB
FCG 50 0.5 5 50 dB
VCG 50 see eqn. 

(5.87)
0.4 0.4 1e2 5 50 dBµmax

10
------------

µmin
µmax

10
------------=
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Simulation #2, Comparison of FCG and VCG Algorithms Using Diferent nw:  The conditions

for this simulation are the same as in simulation #1 (correlated input) with parameters as listed in

Table 6.3. The results in Figure 6.9 show the performance of the VCG with a limited conjugate

direction reuse rate R, as compared to the FCG algorithm using nw=5 and nw=8. In this experi-

ment, the NMSE curves were obtained using the parameters listed in Table 6.3 which also indi-

cates the relative complexity.

TABLE 6.4   Parameter and complexity comparison for FCG (nw=5 and 8) and VCGR algorithm 
(nw=5, R=2).

Algorithm
#Taps
   m α ξ Γ γ nw R SNR

Complexity
(mults/iter)

VCG 50 0.4 0.4 1e2 5 2 50 dB 4161
FCG 50 0.5 5 50 dB 3631
FCG 50 0.5 8 50 dB 8299

FIGURE 6.8 Simulation #1 results. Correlated noise input with a sudden change in the unknown 
system transfer function at iteration 1000. 
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The gradient averaging window nw in the FCG algorithm had to be increased to 8 in order to

obtain the same tracking convergence performance as the VCG algorithm with R=2 and nw=5. As

a result, the complexity of the FCG (nw=8) is approximately 100% greater than the VCG (nw=5,

R=2) for similar performance results using correlated input signals.

Simulation #3, VCGR (Simplified VCG) performance:  The conditions for this simulation are the

same as in Simulation #1 with parameters as listed in Table 6.3.   The results in Figure 6.10 show

the performance of VCG and VCGR, as compared to the NLMS and FCG algorithms. The conver-

gence curves illustrate that the VCG outperforms all other algorithms. The convergence of the

VCGR algorithm (nw=5, R=P=5) outperform the NLMS algorithm 300 samples after the transfer

function change even with a reduced gradient update rate. 

FIGURE 6.9 Simulation #2 results. Comparison of FCG and VCGR using a limited gradient 
reuse rate. Correlated noise input with a sudden change in the unknown system transfer function 
at iteration 1000. 
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A comparison of the relative complexities is shown in Table 6.3. 

The complexity of the VCGR (nw=5, P=5) for this case is approximately 20% of th FCG. There

are some transients during the first few iterations since the initial weight change estimates (which

are reused P times) will be inaccurate during this period. The transients are higher for increased P

both during initial convergence and when the transfer function is changed at iteration 1000 but will

die out as the algorithm converges. The results indicate that depending on the value of P, the con-

vergence rate can be tailored to be fast or slow. Increasing the value of P reduces the convergence

rate (and complexity) such that it falls somewhere between the FCG and NLMS algorithms. 

TABLE 6.5   Comparative complexity using NLMS, FCG, VCG and VCGR (nw=R=P=5).

Algorithm
#Taps
  m α ξ Γ γ nw R P SNR

Complexity
(mults/iter)

NLMS 50 0.5 50 dB 102
FCG 50 0.5 5 50 dB 3631
VCG 50 0.4 0.4 1e2 5 5 1 50 dB 5751
VCGR 50 0.4 0.4 1e2 5 5 3 50 dB 1968
VCGR 50 0.4 0.4 1e2 5 5 5 50 dB 1201
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6.2.8  Application to Acoustic Echo Cancellation

In this section, the VCG algorithm is applied to a real speech signal as recorded in Conference

room #1 using HFT #1 at an average volume of 70 dB SPL. A 20 second speech excitation signal1

was created by concatenating seven repeated speech segments illustrated in Figure 6.11 to generate

the complete 20 second segment shown in Figure 6.12. Room nonstationarities are introduced

during the fifth burst (11-14 seconds) by waving a hand quickly approximately 1 foot above the

HFT. It is possible therefore to observe the characteristics of the algorithm with speech and room

nonstationarity. A comparison of the NLMS, MVSS, accelerated SFTF, FCG and VCG algorithms

1.  The speech signal is obtained from Nortel as a result of analysis of “typical” conversations on telecom-
munication networks. The speech signal is recorded at 8kHz.

FIGURE 6.10 Simulation #3 results. Simplified VCG performance results (VCGR). Correlated 
noise input with a sudden change in the unknown system transfer function at iteration 1000. 
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is shown in Figure 6.13. The number of taps used is 1000, which is sufficient to ensure that the

TIP/TP ratio is not a limiting factor. The parameters used are listed in Table 6.6.

A close-in view of the initial convergence of the algorithms is shown in Figure 6.14. The VCG

algorithm attains the fastest convergence and achieves 20 dB of ERLE at 0.5 seconds. The FCG

algorithm closely follows the VCG convergence but has approximately 1-2 dB poorer ERLE per-

formance.

The results in Figure 6.15 show a close-in view of the tracking performance of the algorithms dur-

ing the speech burst where a nonstationarity in the room response occurs. The average ERLE val-

ues calculated between 11.75 and 13.5 seconds are listed in Table 6.7.

On average, the FCG algorithm obtains the best tracking performance, however it is only 2.4 dB

better than the NLMS algorithm. The VCG algorithm obtains a 1.19 dB improvement over the

NLMS algorithm.

TABLE 6.6  Algorithm parameters

Algorithm Parameters
NLMS N=1000, α=1.0, halting parameter=0.2
MVSS N=1000, ξ=0.97, Γ=0.99, γ=109, µmax=1.0, µmin=10-5

 Accelerated SFTF N=1000, λ=0.9998, acceleration factor=0.90, soft initialization 
constant=50, halting parameter=0.2

VCG N=1000, ξ=0.4, Γ=0.4, γ=102, nw=3, halting parameter=0.2
FCG N=1000, α=1.0, nw=3

TABLE 6.7  Average ERLE calculated between 11.75-13.5 seconds.

Algorithm Average ERLE
NLMS 14.14 dB
SFTF 16.13 dB
VCG 15.33 dB
FCG 16.56 dB
MVSS 15.28 dB
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FIGURE 6.11 Time series plot of the speech excitation signal.
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FIGURE 6.12 Time series plot of the complete excitation signal.
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FIGURE 6.13 Results for different algorithms using speech excitation. A nonstationarity occurs 
between 11.5 and 14 seconds.
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FIGURE 6.14 Close up view illustrating initial convergence performance of algorithms.
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6.2.9  Discussion

The VCG algorithm has reduced complexity as compared to the regular CG and is slightly more

complex than the FCG algorithm depending on the number of iterations performed during the one

dimensional line search. In computer simulations, the VCG algorithm has been shown to have bet-

ter convergence and tracking properties than the FCG in correlated nonstationary environments

and can achieve the same performance as the FCG with reduced complexity. When applied to real

speech signals, the VCG algorithm is found to have superior convergence compared to the acceler-

ated SFTF algorithm, however, it exhibits poorer tracking ability than the FCG algorithm but is

still better than the NLMS algorithm by approximately 1.2 dB. In terms of AEC application, it is

found that the VCG and FCG algorithms can offer improvements in initial convergence and track-

ing ability with real speech inputs compared to standard algorithms like NLMS and SFTF.

FIGURE 6.15 Close up view illustrating tracking performance of algorithms.
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6.3  Summary 

This chapter has presented two new methods to enhance the convergence rate of adaptive filters.

The first training method, presented in Section 6.1, is based on extending the linear fast conjugate

gradient method to the nonlinear domain, specifically neural based adaptive filters. This new train-

ing method enhances the convergence rate as compared to the conventional backpropagation algo-

rithm by using a gradient averaging window and simplified conjugate gradient computations.

Computer simulations show that the convergence rate can be ‘tailored’ depending on the size of

the gradient window. The proposed algorithm was then applied to the nonlinear TDNN-FIR struc-

ture and trained with experimentally obtained data, consisting of both noise and speech signals

which were recorded at high volumes. The experimental results show that the proposed algorithm,

when applied to TDNN based adaptive filters, can obtain better ERLE performance than the linear

FIR counterpart trained using the accelerated SFTF algorithm with real speech signals. Up to 5 dB

improvement in ERLE is obtained at 95 dB SPL. Also, the initial convergence is comparable to

that obtained by the accelerated SFTF algorithm.

The second training method, presented in Section 6.2, is intended for, but by no means restricted to

linear adaptive filters. The method combines the FCG algorithm with a one dimensional line

search, based on the MVSS algorithm. The MVSS algorithm is used to provide a dynamic step size

to replace the optimum step size as calculated in the conventional CG algorithm, and hence can be

considered as an alternate to other line search methods like Armijo’s rule. A simplified version of

the proposed algorithm is also presented which utilizes the concept of gradient reuse to reduce the

computational complexity, depending on the reuse rate. Experimental results using real speech sig-

nals show that the VCG algorithm is capable of improved initial convergence rate as compared to

the SFTF algorithm and has improved tracking ability as compared to the NLMS algorithm.
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Chapter 7
Conclusions

7.1  Summary of this Research

The objective of this thesis was the investigation of nonlinear adaptive filter structures and algo-

rithms for identifying cascaded linear and nonlinear systems with specific application to compen-

sating for nonlinear loudspeaker effects in acoustic echo cancellers (AEC’s) placed inside

handsfree telephones (HFT’s) . We concentrated our investigations on neural based filters as a

computationally attractive alternatives to third order Volterra filters and developed several archi-

tectures to identify cascaded linear and nonlinear systems such as those encountered in the hands-

free telephone domain. We determined that HFT enclosure resonances and vibrations can be a

more serious limitation than loudspeaker nonlinearity to the achievement of a high steady-state

Echo Return Loss Enhancement (ERLE). By controlling mechanical vibrations and resonances

through appropriate design, neural based filters can provide substantial improvements in ERLE.

Finally, we concentrated on developing a nonlinear training algorithm that was efficient, in that a

performance/complexity trade-off could be selected. When applied to real world HFT’s using
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noise and speech training signals, significant improvements in converged ERLE could be

obtained.

We asked ourselves four questions in the Chapter 1: 

1. What sort of limitations do typical nonlinear loudspeakers present to achieving high ERLE val-

ues in typical HFT’s ? 

2. What kind of filters are best suited for nonlinear AEC applications and how can we arrive at

that conclusion? 

3. How can an efficient nonlinear structure and training algorithm be designed that is not overly

complicated yet provide reasonable improvements in performance? 

4. Can the new structures/algorithms be successfully applied in real-world applications?

A review of nonlinear loudspeaker dynamics and performance in Chapter 2 indicates the follow-

ing:

• The major cause of distortion in loudspeakers is due to nonuniform flux density and two point

suspension nonlinearity which become predominant at low frequencies and high volumes. Two

point suspension nonlinearity is present also at extremely low volumes.

• The Volterra filter has found some success in modelling low frequency (woofer) loudspeakers

for high quality studio applications. A 3rd order filter is usually necessary to reduce nonlinear

distortion to target values of -30 dB.

• No applications in the literature could be found dealing with mid-frequency, low quality loud-

speakers that are typically used in HFT’s.
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In Chapter 4, we looked at the the acoustic echo cancellation problem and determined the follow-

ing:

• Although high values of ERLE are often stipulated in specifications1, there is little information

on how nonlinear loudspeaker performance impacts on the practical achievement of these val-

ues. 

• Transducer nonlinearities limit the achievable ERLE at high and extremely low volumes.

Transducer quality also plays a role in determining the achievable ERLE value.

• Vibration and key rattling is a limitation. It is shown in Chapter 5 that this limitation can pre-

vent nonlinear algorithms from achieving their full potential if not controlled adequately. 

Our first question is now answered. However, achieving 40 dB of echo cancellation even in the

linear range of the loudspeaker appears to be possible only when separated loudspeaker and

microphone components are used in anechoic conditions. When placed inside a typical HFT enclo-

sure, vibrations, rattling and other effects will serve to limit the achievable ERLE to below 35 dB.

In Chapter 4 a subsection on the application of infinite impulse response (IIR) structures for AEC’s

arrived at the following conclusions:

• Experimental results performed on both separate transducers in an anechoic chamber and

HFT’s in furnished conference rooms suggest that IIR structures are not well suited to model-

ling a typical loudspeaker-room-enclosure-microphone (LREM) even though some literature

suggests otherwise.

• A Hankel norm approximation error bound for IIR filters is shown to have similar characteris-

1.  Typical specifications are at least 30 dB of cancellation in 0.1 seconds.
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tics to the Total Impulse Power to Tail Power (TIP/TP) ratio at low filter orders.

This partially answers our second question, namely, feedforward structures should be considered

as more promising candidates for AEC applications than recursive structures. 

In Chapter 5, Volterra and neural filters were examined as possible candidates for a nonlinear

AEC. The following conclusions can be summarized:

• Simulation results show that the Volterra filter can obtain a higher modelling accuracy than a

neural based filter. However, experimental results show that when presented with real-world

signals, neural filters can achieve equal or better results compared to the Volterra filter.

• For AEC applications where the model order is quite large Volterra filters have a much higher

complexity than neural based filters for equivalent performance results. 

• A tapped delay line neural network (TDNN) filter can achieve better performance than a linear

finite impulse response (FIR) filter only when the nonlinear distortion is greater than several

percent of the primary signal power. Given that some improvement can be made with a neural

filter, a low number of hidden nodes is sufficient to provide several dB of ERLE improvement.

• In the undermodelled case, the TDNN provides a significant improvement in ERLE compared

to the linear FIR which in the linear region is fundamentally limited by the TIP/TP ratio.

• The TDNN was found to have poorer performance at low distortion levels compared to the lin-

ear FIR filter. A linear region in the activation function was found to improve the modelling

accuracy at both low and high distortion levels compared to networks using hyperbolic tangent

function activation functions.
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We are now in a position to completely answer the second question, namely that simple, feedfor-

ward neural based filters can achieve the best performance complexity trade-off compared to Volt-

erra algorithms and recursive IIR structures. 

Since simplicity of design is of utmost importance in AEC design, several new neural filters were

subsequently proposed, the most successful being the two stage neural filter. The two stage neural

filter has the following features:

• The neural filter is composed of a TDNN in parallel with an FIR filter. The TDNN portion

models the first part of the LREM where most of the signal energy is contained. The FIR por-

tion models the remaining echo tail.

• A low order TDNN with a single hidden layer and one or two hidden nodes is sufficient to

model nonlinearities typically encountered in the AEC domain. Experimental results show that

the converged steady-state ERLE of a real world HFT can be improved by up to 11 dB when

trained with a filtered noise signal.

The variable activation function was proposed which adapts to be highly linear when trained with

signals which have little nonlinear distortion. A training algorithm was developed.

As an alternative to weakened nonlinear systems which consist of fixed nonlinearities sandwiched

between linear adaptive filters, the synaptic FIR multilayer perceptron (MLP) with variable activa-

tion function was proposed (VA-FIR MLP), along with an appropriate backpropagation (BP) based

training method. 

• Computer simulations show that the VA-FIR MLP is well suited to identifying low order non-

linear systems of the sandwiched linear-nonlinear-linear type. For application to nonlinear

AEC, experimental results show that it is not as effective as the two stage neural filter described
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earlier.

We can now answer the first part of Question 3). By mixing neural networks and linear FIR struc-

tures, a two stage neural filter has been constructed which maintains the benefits of both filter

types keeps the overall architectural complexity low. 

In order to study the performance of the structures proposed in Chapter 5, a nonlinear fast conju-

gate gradient (NFCG) backpropagation algorithm is developed in Chapter 6. The NFCG algorithm

has the following features:

• The NFCG is based on the standard conjugate gradient (CG) algorithm. It is developed by

extending the fast conjugate gradient (FCG) algorithm to the nonlinear case, specifically neural

networks. 

• There is a complexity/performance trade-off which is determined by the size of the gradient

averaging window.

We can now answer the last part of Question 3). A simple algorithm based on the CG method can

be used to train the nonlinear network and provide a complexity/performance trade-off.

When applied to the two stage neural filter of Chapter 5 using real speech inputs at an average vol-

ume of 95 dB SPL, the NFCG is capable of improving the ERLE by approximately 5 dB as com-

pared to an FIR trained with the accelerated Stabilized Fast Transversal Filter (SFTF) algorithm.

A linear variation on the FCG algorithm is also developed which uses a dynamic step size calcula-

tion using the modified variable step size (MVSS) algorithm. Experimental results using speech

signals in a conference room environment show that the variable step size CG (VCG) algorithm
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achieves the fastest convergence rate of several algorithms tested, including the FCG and acceler-

ated SFTF algorithm.

Finally, Question 4) is answered. The proposed architectures and algorithms have been success-

fully applied to real world signal processing applications.

7.2  Summary of Contributions

The investigation, development and subsequent simulation and experimental performance results

presented in this thesis provide several important contributions to the field of neural networks,

acoustic echo cancellation, and nonlinear system identification. These contributions are briefly

summarized here:

1. Vibration and rattling within the HFT handset can present a physical limitation to achievable

ERLE which may or may not be more severe than nonlinear loudspeaker distortion. It must be

controlled in order to allow nonlinear speech and echo cancellation algorithms/structures to

work effectively. 

2. A two stage neural filter has been developed. It has a simple architecture that requires only a

small number of nonlinear nodes. It is capable of providing up to 11 dB ERLE improvement at

high volumes using training signals consisting of noise and up to 5 dB improvement when

using real speech signals.

3. The development of a variable activation function and update equations for incorporation into a

a standard TDNN or synaptic FIR MLP has been presented. The update equations are based on

the temporal backpropagation algorithm with modifications to allow for a window of accumu-

lated gradients.
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4. A fast conjugate gradient algorithm for neural networks has been developed and applied to the

TDNN and two stage neural filter. The update equations are based on the fast conjugate gradi-

ent algorithm which has been modified for application to neural networks. A linear FCG algo-

rithm that incorporates MVSS line search and gradient reuse to obtain complexity reductions is

also presented which obtains substantial convergence rate improvements with real speech sig-

nals.

5. Publication of several refereed conference and journal papers which report on the research

results. See [51],[126],[127],[163],[164],[165],[166],[167].

7.3  Suggestions for Future Research

During the course of this research, several issues arose which merit further research. These are

summarized below:

• Combining frequency domain and nonlinear methods. The GMDF [137] algorithm is a success-

ful AEC algorithm that might benefit from the addition of nonlinear signal processing of the

form described in this thesis. The GMDF algorithm is capable of achieving high levels of con-

verged ERLE with speech inputs1, however it would appear that further improvements may not

be possible without the inclusion of some sort of nonlinear signal processing.

• Investigation of methods to model and reduce vibrations and resonances within a handsfree ter-

minal, including proper selection, orientation and mounting of both the loudspeaker and micro-

phone elements. This would improve the achievable steady state ERLE and perceived speech

quality.

1.  Recent measurements performed by J.P. Lariviere [168] have produced real-world ERLE values of 35-40 
dB using speech inputs recorded at mid volumes in the 70 dB SPL range.
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• Experimental determination of the typical parameters of small inexpensive loudspeakers typi-

cally used in HFT’s using a laser displacement system and determination of how closely these

fit the theoretical models. The nonlinear modelling presented in Chapter 2 assumed that the

inductance  and the higher order terms  were negligible. This may be

an invalid assumption for these types of loudspeakers.

• Application of the conjugate gradient training algorithms in Chapter 6 to the structures which

contain variable activation functions. 

7.4  Conclusion

In conclusion, this thesis has presented the key highlights in our study on the use of nonlinear sig-

nal processing techniques to the field of acoustic echo control. The research results have given

positive, definitive answers to the four questions posed previously.

In an ideal world, all problems would be isolated from one another, and the solution procedures

would involve direct methods, based on the principle of divide and conquer. However, in the real

world, every piece of matter is immutably connected with every other piece of matter in some way,

either directly or vicariously, and what may appear to be an obvious solution to a problem at first

glance is often cursory. We are then presented with the opportunity to solve a small part of a much

larger puzzle. Indeed, the puzzle is limitless.

L x( ) L0= L1x L2x2+
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Appendix A  Recording Venues

Conference Room #1

Minto 3033

Characteristics:

• rectangular : 12’W x 18’L x 10’H

• reflective walls and floor.

• two tables, 6 padded chairs arranged around one table.

• ventilation fan on

18’

12’

FIGURE A.1 Conference room #1 (Minto 3033).



Recording Venues 205 

Conference Room #2

Minto 2014

Characteristics:

• rectangular conference room: 19’W x 38’ L x 10’H

• furnished. padded chairs, paintings, one small sound absorbing tile.

• floor is carpeted. 

• ventilation fan on.

38’

19’

FIGURE A.2   Conference room #2 (Minto 2014)
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Standard Audio Baffle

(Anechoic Recordings)

.

Notes:

• The loudspeaker is placed in standard baffle to remove effects of vibrations and resonances 

within the HFT enclosure.

• Used during anechoic recordings.

• The large size approximates an “infinite baffle” characteristic.

• Dimensions are offset to prevent vibrational modes within the baffle.

76 cm.

10
3 

cm
. 16
0 

cm
.

122 cm.

Plexiglass
Submount

Plexiglass
Submount

Loudspeaker

Plywood
Baffle

(a) (b)

FIGURE A.3   Standard baffle used to test stand-alone loudspeakers. (a) Dimensions of plywood 
section (b) Detail of plexiglass submount.
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Appendix B  Equipment Parameters

TABLE B.1Parameters of HFT and transducer equipment.

Parameter Model Rating Notes
SPK#1 CF050-A00604 50Ω, 2W 2” dia. round, large magnet.
SPK#2 LS06C050 50Ω, 0.5W 2.25” x 3” oval. Medium 

size magnet.
SPK#3 AD4061/W8 8Ω, 10W 4” dia. round. Large mag-

net, high quality.
MIC#1 Archer 270-090 4.5VDC thru ext. 1kΩ. 

S/N >40 dB , Sens.=-
6.5 dB

Electret Microphone (low 
quality).

MIC#2 Audio Technica 
AT831b and power 
module

Cardiod sens. -44 dBm 
200Ω.

“High quality” microphone 
element.

HFT#1 Northern Telecom /
NT8B04AA

SPK#2 $75 price range

HFT#2 Mitel/Superset 430 60Ω, 0.5W, 2.5”round 
spkr.

Office set functions

HFT #3 Mitel/Superset 410 60Ω, 0.5W, 2.5”round 
spkr.

Office set functions

HFT#4 Telemax/ CP268A 8Ω, 0.25W, 2”round 
spkr.

$30 price range

HFT#5 Panasonic / KX-
T2315

32Ω, 0.4W, 2.5”round 
spkr.

$120 price range

HFT#6 Norther Telecomm 
/ Vista 350

50Ω, 0.5W, 2”round 
spkr.

Electret mic. inside a rub-
ber grommet. Loudspeaker 
not screwed to enclosure.

SPL Meter Realistic 33-2050 50-125 dB SPL 0dB=0.0002 µbar.
DAT #1 TEAC DA-P20 Portable
DAT #2 Sony TC-D7 Portable
Noise Gen-
erator

General Radio 
Company 1390-
B

0.0005-5 Vrms range 
and 20 kHz/500kHz/
5Mhz selectable BW.

Noise diode, amplified.

Audio 
Ampliofier

Samson Servo-
150

75W rms/channel. 2 
channels.

Studio quality.
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Appendix C   Circuit Schematics

A number of circuits were required in order to make the appropriate measurements. The schemat-

ics are shown in Sections C.1 through C.7.

C.1  Primary Conditioning Amplifier 

+

-

100kΩ0.1uF

0.1uF

100kΩ

AD524

1kΩ 2.2kΩ 10kΩ
+12V

Input

+12V

-12V

0.1uF

0.1uF

+12V

5kΩ

1

2

3

16
8

10

9

4
5

7

6

50kΩ

Single

Ended

Output

Microphone Bias (1.5V)

AD524: Instrumentation Amplifier.

Gain

Offset

1.8kΩ

100Ω

1.8kΩ

1:1

10:1

onoff
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C.2  Reference Conditioning Amplifier

+

-

1kΩ

1kΩ

AD524

Input

+12V

-12V

0.1uF

0.1uF

+12V

5kΩ

1

2

3
16

8

10

9

4
5

7

6

50kΩ

Single

Ended

Output

AD524: Instrumentation Amplifier.

Offset

Gain

47kΩ

47kΩ
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C.3  Switched Capacitor Filter 

D
Q

Q

clr psvcc

5V

74HC74

39pf 270pf

100Ω

10MΩ

1 2

14

7

2

3

14 1 4

5

6

7

U1

U1:74HC04

XTAL

XTAL: MP-1-4.096 MHz

39pf

2.048 MHz Clock

no connection

+5V

-

+

U2

U4

U3
TP3040

Bandpass
Input

Lowpass
Input

Bandpass
Output

Lowpass
Output

100Ω

10kΩ

10kΩ

20kΩ

47kΩ

100kΩ

100kΩ

0.1µF0.1µF

0.01µF

1.0 µF

0.01µF

1.0 µF

+5V -5V

2

3 4 5 12

14

16

7

6

11 15 139 8

1

10

1

2

3

U4:TL074

Lowpass Gain=1.0 Lowpass Frequency: DC-3400 Hz

Bandpass Gain=1.0 Bandpass Frequency: 200-3400 Hz

1kΩ
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C.4  Resistive Attenuator Circuits

100kΩ

10kΩ
Input

Output
100kΩ

2kΩ

Output impedance approximates microphone loading.

chassis

100kΩ

3

2

1

3

2

1

signal 1

signal 2

gnd

XLR type socketXLR type socket
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C.5  General Purpose Amplifiers

0.1uF

0.1uF

0.1uF

U1

-12V

+12V

4

3

2

+

-

1

11

TL07410kΩ -

+

6

5 7
U1

TL074

10kΩ

100kΩ

10kΩ

10kΩ

10kΩ

Gain

invert

non
invert
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Appendix D  Algorithms

D.1  The LMS Algorithm

Initialization. ( D.1)

Algorithm. ( D.2)

( D.3)

Stability. µ is the step size which must be chosen to ensure stability:

( D.4)

where λi are the eigenvalues of the input correlation matrix. 

D.2  The Normalized LMS Algorithm

Initialization. ( D.5)

Algorithm. ( D.6)

( D.7)

where

• α is the normalized step size constant.

• ε is a small positive constant used to place a lower bound on the input signal power.

Stability. 0<α<2. 

w n( ) 0=

e n( ) y n( ) w n( )T x n( )⋅–=

w n 1+( ) w n( ) µ e n( ) x n( )⋅ ⋅+=

0 µ 2

λi

i 0=

M 1–

∑

----------------< <

w n( ) 0=

e n( ) y n( ) w n( )T x n( )⋅–=

w n 1+( ) w n( ) α e n( ) x n( )⋅ ⋅

ε x n( ) 2+
----------------------------------+=
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D.3  The Modified Variable Step Size Algorithm

The MVSS is a robust variable step size algorithm for LMS type filters that estimates the autocor-

relation of the error signal to determine when the minimum of the performance surface is reached.

When the error correlation is large, dynamic step size control adjusts the step size to be large thus

speeding up the convergence. When the error correlation is small, as is the case in high noise envi-

ronments, or when the minimum is reached, the step size is reduced correspondingly. 

Initialization. ( D.8)

Algorithm. ( D.9)

( D.10)

( D.11)

where,

( D.12)

and ( D.13)

The parameter γ controls the convergence time as well as the final misadjustment. The parameter ζ

controls the averaging of the step size update and  Γ controls the averaging time constant of the fil-

tered error update. The parameter ρ gives a short time estimate of the error signal autocorrelation.

Typical parameter values are ζ=0.97, Γ=0.99, γ=1e-5 [55]. 

w n( ) 0=

e n( ) y n( ) w n( )T x n( )⋅–=

w n 1+( ) w n( ) µ n( ) e n( ) x n( )⋅ ⋅+=

µ n 1+( )

µmax µ n 1+( ) µmax≥;

µmin µ n 1+( ) µmin≤;

ζµ n( ) γρ2 n( )+ µmin µ n 1+( ) µmax< <;
⎩
⎪
⎪
⎨
⎪
⎪
⎧

=

ρ n( ) Γρ n 1–( ) 1 Γ–( )e n( )e n 1–( )+=

0 ζ 1< <
Γ 1<
γ 0>⎩

⎪
⎨
⎪
⎧
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D.4  The Exponentially Weighted RLS Algorithm

The exponentially weighted RLS algorithm can be constructed from the accelerated steepest

descent algorithm.

( D.14)

by setting the variables  and µ(n) as follows;

( D.15)

where;

( D.16)

 is the estimated inverse of the M by M autocorrelation matrix R at time n-1.

λ is a forgetting factor between 0 and 1.

ε is the a priori estimation error based on the weight vector at time n-1.

The term q is a measure of the input signal power just as xT(n)x(n) would be, but with a normaliza-

tion introduced by . The matrix inversion lemma [171] is employed to recursively com-

pute . It reduces the complexity from O(M3) to O(M2) by using the previous value

 as follows;

( D.17)

where the gain vector k(n) is described by;

ε n( ) y n( ) wT n 1–( )x n( )–=
w n( ) w n 1–( ) µ n( )ε n( )P n 1–( )x n( )+=

P n 1–( )

P n 1–( ) R 1– n 1–( )≈

µ n( ) 1
1 q n( )+
--------------------=

q n( ) λ 1– x
T

n( )P n 1–( )x n( )=

P n 1–( )

P n 1–( )

P n( )

P n 1–( )

P n( ) λ 1– P n 1–( ) λ 1– k n( )xT n( )P n 1–( )–=
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( D.18)

D.5  The Accelerated 8N-SFTF Algorithm

Initialization. 

 is the initial input variance and should be set large enough to prevent start-up divergence.  A

value between 1 and 200 appears reasonable for filter orders up to 1200 taps.

( D.19)

Phase 1: Prediction Part. 

• Compute the forward prediction error ef(n).

   ( D.20)

• Compute the variance α of the forward prediction error.

( D.21)

• Compute the likelihood variable γ of order N+1.

( D.22)

• Compute the first auxiliary variable s and the dual Kalman gain k of order N+1.

k n( ) λ 1– P n 1–( )x n( )
1 q n( )+

-----------------------------------------=

α 0( ) ζ λN⋅=

β 0( ) ζ=

ζ

γN 0( ) 1=

xN aN bN kN wN 0= = = = =

kN 1+ 0=

ef n( ) x n( ) aN n 1–( )T xN n 1–( )⋅–=

α n( ) λ α n 1–( )⋅ γN n 1–( ) ef n( )2⋅+=

γN 1+ n( ) λ α n 1–( )⋅
α n( )

---------------------------- γN n 1–( )⋅=
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( D.23)

( D.24)

• Update the coefficients of the forward predictor aN.

( D.25)

• Compute the backward prediction error eb(n).

( D.26)

• Stabilize the backward prediction error.

( D.27)

• Compute the likelihood variable of order N.

( D.28)

• Compute the second auxiliary variable u and the dual Kalman gain k of order N.

( D.29)

( D.30)

• Update the coefficients of the backward predictor b.

( D.31)

• Compute the variance β of the backward prediction error.

sN 1+ n( )
ef n( )

λ α n 1–( )⋅
---------------------------- 1

aN n 1–( )–
⋅=

kN 1+ n( )
0

k̃N n 1–( )
sN 1+ n( )–=

aN n( ) aN n 1–( ) ef n( ) γN n 1–( ) kN n 1–( )⋅ ⋅–=

eb n( ) x n N–( ) bN n 1–( )T xN n( )⋅–=

eb
˜ n( ) 2 eb⋅ n( ) λ β n 1–( ) kN 1+

N 1+ n( )⋅ ⋅+=

γN n( )
γN 1+ n( )

1 γN 1+ n( ) ẽb n( ) kN 1+
N 1+ n( )⋅ ⋅+

----------------------------------------------------------------------------=

uM 1+ n( ) k– N 1+
N 1+ n( ) bN n 1–( )–

1
⋅=

kN n( )

0
kN 1+ n( ) uM 1+ n( )+=

bN n( ) bN n 1–( ) eb
˜ n( ) γN n( ) kN n( )⋅ ⋅–=
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( D.32)

Phase 2: Filtering Part. 

( D.33)

( D.34)

where

( D.35)

and ρ is the acceleration factor which varies the effective accelerated forgetting factor λacc

between λ (ρ=0) and 0 (ρ=1), according to;

( D.36)

Stability.   (Note: the lower bound should be avoided)

Conditional Re-initialization. The prediction part of the algorithm must be re-initialized follow-

ing periods of poor excitation, which is typical with speech. This is accomplished by resetting all

prediction variables whenever  approaches zero without clearing wN(n), i.e,.

( D.37)

( D.38)

β n( ) λ β n 1–( )⋅ γN n( ) eb
˜ n( )

2
⋅+=

e n( ) y n( ) wN n 1–( )T xN n( )⋅–=

wN n( ) wN n 1–( ) η n( ) e n( ) γN n( ) kN n( )⋅⋅ ⋅–=

η n( ) 1
1 ρ γN n( )⋅–
------------------------------=

λacc
1 ρ–( )λ
1 ρλ–

--------------------=

1 1
2N
-------–⎝ ⎠

⎛ ⎞ λ 1< <

γN n( )

aN bN kN 0= = =

α n( ) ζ λN⋅= β 0( ) ζ=
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D.6  Equation Error LMS-IIR Algorithm

Initialization. ( D.39)

Algorithm. 

( D.40)

( D.41)

( D.42)

where;

 ( D.43)

( D.44)

( D.45)

The step sizes µa and µb can be fixed or normalized with respect to the input power in the same

way as the NLMS algorithm. 

D.7  Output Error LMS-IIR Algorithm with Simplified Gradient

The output of an OE-IIR filter is defined by;

( D.46)

The parameter update is obtained by minimizing J respect to the weight vector w;

w n( ) 0=

y n( ) wT n( )u n( )=

e n( ) d n( ) y n( )–=

w n 1+( ) w n( ) µe n( )u n( )+=

w n( ) a1 n( ) a2 n( )…ana
n( ), b0 n( ) b1 n( )…bnb

n( ),,[ ]T=

u n( ) d n 1–( ) … d n na–( ), , x n( ) x n 1–( ) … x n nb–( ), ,,,[ ]T=

µ µa
1 … µa

na µb
0 … µb

nb, , , , ,[ ]=

y n( ) ai n( )y n i–( )

i 1=

na

∑ bi n( )x n i–( )

i 0=

nb

∑+=
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( D.47)

where the gradient  is the following column vector;

( D.48)

Each component  of may be obtained by differentiating (D.46) to obtain;

( D.49)

( D.50)

The approximation is valid if the step size is chosen sufficiently small [62]. We may now rewrite

(D.48) using the approximations of (D.49) and (D.50) as a purely “autoregressively” filtered

regressor;

( D.51)

can be viewed as an approximate gradient estimate of the current output with respect

to the weight vector w. The calculation of  is numerically intensive due to the AR filtering

by the ai coefficients for each component. A simplified gradient calculation can be made by

assuming that the filtered regressor vector can be approximated by taking delayed outputs of the

∇w J( )
w∂
∂ e2 n( )( ) 2e n( )

w∂
∂ d n( ) y n( )–[ ]= =

2–= e n( )
w∂
∂ y n( )[ ] 2e n( )∇w y n( )( )–=

∇w y n( )( )

∇w y n( )( ) y n( )∂
a1 n( )∂

---------------- … y n( )∂
ana

n( )∂
------------------ y n( )∂

b0 n( )∂
---------------- … y n( )∂

bnb
n( )∂

------------------, , , , ,
T

=

∇w y n( )( )

y n( )∂
ai n( )∂

--------------- y n i–( ) am n( ) y n m–( )∂
ai n( )∂

------------------------

m 1=

na

∑+ y n i–( ) am n( ) y n m–( )∂
ai n m–( )∂

--------------------------

m 1=

na

∑+≈=

y n( )∂
bi n( )∂

--------------- x n i–( ) am n( ) y n m–( )∂
bi n( )∂

------------------------

m 1=

na

∑+ x n i–( ) am n( ) y n m–( )∂
bi n m–( )∂

--------------------------

m 1=

na

∑+≈=

uf n( ) u n( ) am n( )uf n i–( )

m 1=

na

∑+=

uf n( ) y n( )

uf n( )
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first filtered component only. As a result, the filtered regressor becomes;

( D.52)

Figure D.1 shows how the simplified gradient vector is obtained by filtering the x(n) and y(n) by

the all pole section , and then selecting delayed versions of x(n) and y(n)..

Stability Monitoring. One of the drawbacks with IIR algorithms is that the poles may update out-

side of the unit circle and cause instability. Various tests may be performed to ensure that the

updates are stable, but this tends to either add complexity or compromise the performance of the

algorithm. If the sum of the magnitude of all the pole coefficients is less than zero, then stability is

guaranteed [62] however, it severely limits the values of  especially for large na.

( 4.53)

Stability monitoring may be simplified by using parallel or cascaded structures which consist of

uf n( ) yf n 1–( ) yf n 2–( )…yf n na–( ) xf n( ) xf n 1–( ) …xf n nb–( ),,,,[ ]T=

1 A z( )–

FIGURE D.1 The OE simplified gradient evaluation.

B z( )
1 A z( )–
--------------------

1
1 A z( )–
--------------------

z-1

z-1

z-1

xf n( )

xf n 1–( )

xf n 2–( )

xf n nb–( )

1
1 A z( )–
--------------------

z-1

z-1

z-1

yf n 1–( )

yf n 2–( )

yf n 3–( )

yf n na–( )

y n( )x n( )

ai n( )

ai n( )

i 1=

na

∑ 1  ,< for all n
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1st or 2nd order IIR sections [169] which have a simpler stability check, referred to as the stability

triangle [62]. Lattice structures also have simple stability checks (see [170])

Combining (D.46) through (D.52) yields the adaptive IIR-LMS filter algorithm with the same

form as the accelerated steepest descent algorithm of equation (D.14).

OE_IIR Algorithm with Simplified Gradient

Initialization. ( D.54)

Vector Definitions. 

 ( D.55)

( D.56)

( D.57)

( D.58)

( D.59)

Algorithm. ( D.60)

( D.61)

w n( ) 0=

w n( ) a1 n( ) a2 n( )…ana
n( ), b0 n( ) b1 n( )…bnb

n( ),,[ ]T=

u n( ) y n 1–( ) … y n na–( ), , x n( ) x n 1–( ) … x n nb–( ), ,,,[ ]T=

yf n( ) y n( ) am n( )yf n m–( )

m 1=

na

∑+=

xf n( ) x n( ) am n( )xf n m–( )

m 1=

na

∑+=

uf n( ) yf n 1–( ) yf n 2–( )…yf n na–( ) xf n( ) xf n 1–( ) …xf n nb–( ),,,,[ ]T=

e n( ) d n( ) w– T n( )u n( )=

w n 1+( ) w n( ) MP n( )uf n( )e n( )+=
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The matrix  is replaced with the identity matrix I in the same manner as  is replaced

with the identity matrix in the LMS algorithm, and;

. ( D.62)

represents the fixed step sizes. Alternately, if we wish to solve for the coefficients in a least-

squares sense, we may replace  with an estimate of the inverse Hessian matrix, updated

according to;

( D.63)

and M with a fixed step size µ. Alternately, P may be update using the matrix inversion lemma

[171];

( D.64)

D.8  The LMS Volterra Algorithm

Mapping and Regressor Construction. For a pth order polynomial system, construct the pth order

weight and input vectors.

( D.65)

( D.66)

where ⊗ is the Kronecker product of vectors and it is assumed that the duplicate terms have been

removed. Next construct the extended weight and input vectors.

P n( ) P n( )

M diag µ1 …µna
ρ0 …ρnb

, ,,[ ]=

P n( )

P 1– n( ) λP 1– n 1–( ) 1 λ–( )uf n 1–( )uf
T n 1–( )+=

P n( ) 1
λ
--- P n 1–( )

P n 1–( )uf n( )uf
T n( )P n 1–( )

λ
µ
--- uf

T n( )P n 1–( )uf n( )+
----------------------------------------------------------------------–=

hp n( ) hp m1 m1 … m1, , ,( ) hp m1 m1 … m2, , ,( ) … hp mp mp … mp, , ,( ), , ,[ ]T=

xp n( ) x1 n( ) xp 1– n( )⊗=
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( D.67)

( D.68)

Initialization. ( D.69)

Algorithm. ( D.70)

For each pth order polynomial section update the weights.

( D.71)

where µp is the step size for the pth power term. Alternately, a normalized step size may be com-

puted for each pth order power term as;

( D.72)

Stability. Each µp is chosen to ensure stability according to:

( D.73)

where λi are the eigenvalues of the pth extended input correlation matrix. 

he
T n( ) h0 hT

1 n( ) … hp
T, , ,[ ]=

xe
T n( ) 1 xT

1 n( ) … xp
T, , ,[ ]=

he n( ) 0=

e n( ) d n( ) he
T n( ) xe n( )⋅–=

hp n 1+( ) hp n( ) µpe n( )xp n( )+=

µp
˜ α

ε xp n( ) 2+
------------------------------=

0 µp
2

λi

i 0=

M 1–

∑

----------------< <
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Appendix E  Statistics of a Nonlinear Function

E.1  Mean and Variance

Expected Value: The expected value or mean of a continuous random variable X having a proba-

bility density function f(x) is given by;

(E.1)

If X is a continuous random variable with probability distribution f(x) and g(x) is any real valued

function of X, then;

(E.2)

Variance: if X is a random variable with mean m, then the variance equals;

(E.3)

For any random variable X and constants a and b;

(E.4)

(E.5)

E.2  The Normal and Uniform Distribution

Normal Distribution: The normal distribution probability density function is given by;

(E.6)

where σ is the standard deviation of the signal, usually set to one.

E X( ) m xf x( ) xd
∞–

∞

∫= =

E g X( )( ) g x( )f x( ) xd
∞–

∞

∫=

V X( ) E X2( ) m2–=

E aX b+( ) aE X( ) b+=

V aX b+( ) a2V X( )=

f x( ) 1
σ 2π
--------------e x2 2σ2⁄–=
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Higher Order Moments: The higher order moments may be obtained from the following equa-

tion.

(E.7)

Variance of The Normal Distribution: The variance of the normal distribution is obtained by

substituting (E.7) into (E.3) to obtain;

(E.8)

The Uniform Distribution: The uniform probability density function is given by;

(E.9)

Mean of the Uniform Distribution: Using the above probability function and equation (E.2) we

can find E(X) as;

(E.10)

Higher Order Moments: Similarly, substituting X2,X3,X4,X5,X6 into (E.2), we can get;

(E.11)

(E.12)

(E.13)

(E.14)

E Xn( )
0 n 2k 1+=

1 3… n 1–( )σn⋅ n 2k=⎩
⎨
⎧

=

V X( ) σ2=

f x( ) 1
b a–( )

----------------= a x b≤ ≤

f x( ) 0= elsewhere

E X( ) b a+
2

------------=

E X2( ) b2 ab a2+ +
3

------------------------------=

E X3( ) b3 b2a ba2 a3+ + +
4

------------------------------------------------=

E X4( ) b4 b3a b2a2 ba3 a4+ + + +
5

-------------------------------------------------------------------=

E X5( ) b5 b4a b3a2 b2a3 ba4 a5+ + + + +
6

-------------------------------------------------------------------------------------=
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(E.15)

Variance of The Uniform Distribution: The variance of a zero mean variable X with a uniform

distribution between a and b can be computed by substituting (E.10) and (E.11) into (E.3) to

obtain;

(E.16)

E.3  Mean and Variance of a Nonlinear Function 

If y is a function of a random variable X, i.e.;

(E.17)

then the mean of the function y is given by;

(E.18)

and the variance of the function y is given by the relationship;

(E.19)

where E(y2) is given by the following equation;

(E.20)

E.4  Nonlinear Examples 

Example 1: Signal-to-Distortion Ratio (SDR) Assuming a Uniform Distribution for X

Assume X has a range between -1 and +1. Calculate the signal to distortion of a variable y where y

is a function of X, represented by the following equation;

E X6( ) b6 ab5 a2b4 a3b3 a4b2 a5b a6+ + + + + +
7

-------------------------------------------------------------------------------------------------------=

V X( ) b a–( )2

12
-------------------=

y uX vX2 wX3+ +=

E y( ) uE X( ) vE X2( ) wE X3( )+ +=

V y( ) E y2( ) E y( )[ ]2–=

E y2( ) u2E X2( ) 2uvE X3( ) v2 2uw+( )E X4( ) 2vwE X5( ) w2E X6( )+ + + +=
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(E.21)

This may be expressed as;

(E.22)

where we have divided y into signal (s) and distortion (d) components,

(E.23)

and (E.24)

The higher order moments of X are calculated using equations (E.11) through (E.15). 

E(X)=0
E(X2)=1/3
E(X3)=0
E(X4)=1/5
E(X5)=0
E(X6)=1/7

The variance of the undistorted signal s=uX is obtained by setting v and w equal to zero in equation

(E.17) and applying (E.19); 

(E.25)

The variance of the distortion signal d=vX2+wX3 is obtained by first computing the moments;

y αX βX2 δX3+ +
α β δ+ +

----------------------------------------=

y s d+=

uX vX2 wX3+ +=

s uX=

d vX2 wX3+=

u α
α β δ+ +
-------------------------------=

v β
α β δ+ +
-------------------------------=

w δ
α β δ+ +
-------------------------------=⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛

V s( ) E s2( ) E s( )[ ]2– u=
2
E X2( ) 0– u2

3
-----= =
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(E.26)

(E.27)

hence,

(E.28)

The signal to distortion ratio (SDR) is determined as 10 log10 (V(s)/V(d)).

Example 2: Signal-to-Distortion Ratio (SDR) Assuming a Normal Distribution for X 

Assume X has a unit standard deviation. The higher order moments are calculated using equation

(E.7). 

E(X)=0
E(X2)=1
E(X3)=0
E(X4)=3
E(X5)=0
E(X6)=5

since σ=1.

The variance of the undistorted signal s=uX is obtained by applying (E.19); 

(E.29)

The variance of the distortion signal d=vX2+wX3 is obtained by first computing the moments;

(E.30)

(E.31)

E d( ) vE X2( ) uE X3( )+ v 3⁄= =

E d2( ) v2E X4( ) 2vwE X5( ) w2E X6( )+ +=

v2 5⁄ w2 7⁄+=

V d( ) v2 5⁄ w2 7⁄ v 3⁄[ ]2–+ 4v2 45⁄ w2 7⁄+= =

V s( ) E s2( ) E s( )[ ]2– u=
2
E X2( ) 0– u2= =

E d( ) vE X2( ) uE X3( )+ v= =

E d2( ) v2E X4( ) 2vwE X5( ) w2E X6( )+ +=

3v2 5w2+=
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hence,

(E.32)

(E.33)

The SDR is determined as 10 log10 (V(s)/V(d)).

E.5  Implications for Adaptive Systems

From the above analysis, the SDR is a nonlinear function of both the input standard deviation (if

noise) and the characteristics of the signal. This is illustrated in Figure E.1, which shows the calcu-

lated SDR for a cubic system similar to (E.21) where α=1, β=δ=0.2 are fixed as the standard devi-

ation of the input noise signal is changed. The range of the SDR’s is significantly different

between the two signals due to the outliers in the normal distribution. This has important implica-

V d( ) 3v2 5w2 v2–+ 2v2 5w2+= =
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FIGURE E.1 Computed SDR for a cubic order system where the standard deviation of the input 
signal changes.
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tions for adaptive systems that deal with inputs that have high peak-to-RMS ratios, for example

speech. Essentially, the higher the peak-to RMS ratio encountered in the nonlinear domain, the

lower the SDR and the worse the linear algorithms will perform in identifying the unknown sys-

tem.


