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ABSTRACT

A new algorithm is presented which combines the Fast Conjugate Gradient algorithm (FCGA), the Modi-
fied Variable Step Size (MVSS) algorithm, and gradient reuse to provide a convergence/traeiorg p
mance/complexity trade-off. The proposed algorithm reuses the estimated conjugate directiod(agtor

at each iteratiotk to search for the minimum along one particular conjugate direction, and thus performs a
one dimensional line search. The variable step size reduces the number of iterations necesaahytter
minimum during the line search portion. Improved convergence and tracking is obtained compared to the
NLMS, RLS, FCGA and MVSS algorithms when the input data is correlated and the environment is non-
stationary. By restricting the number of iterations performed during the line search, it is possible to achieve
the same performance as the FCGA but using a smalfetow size, and therefore reduced complexity. A
simplified version of the proposed algorithm is also presentedrgusiesveight updates (i.e the gradient)

to avoid calculating gradients and conjugate directions at every sampleis simplified algorithm only
invokes the conjugate gradient update evetly sample resulting in an overall complexity reduction by a

factor of P as compared to the FCGA. Simulation results are also presented.

1.0 INTRODUCTION

The Conjugate Gradient Algorithm (CGA) has been shown to provide convergence speed comparable to
the recursive least square (RLS) algorithm even when the input signal autocorrelation matrix is ill condi-

tioned [1]. However, the CGA computational burden is still high compared to variations based on the Least
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Mean Square (LMS) algorithm [2]. Boray and Srinath [1] recently develop&bsaconjugate gradient
algorithm (FCGA) for adaptive filtering using an avaged mstantaneous gradient ovemandow of past

sample values. The advantages of this windowed approach are (i) better tracking and convergence is
achieved in nonstationary environments with correlated data compared to the RLS algorithm, and (ii) there
are no stability problems associated with an exponential forgetting factor as in the RLS algorithm. In this
paper, we propose a new algorithm which is based on extending the FCGA to include conjugate direction
reuse using dynamic step size control based on the Modified Variable Step Size (MVSS) algorithm [4]. We
call this new algorithm the conjugate gradient reuse algorithm (CGRA) since it performs a simple one
dimensional line search for the minimum along the estimated gradiesttitin. Other line search tech-
niques such as the cubic interpolation algorithm [5] and the scaled conjugate gradient algorithm (SCGA)
[6] have been proposed in the literature, however, these are formulated for full gradients and not for gradi-
ent estimates based on the technique described in [1]. A stochastic line search algorithm has also been pre-
sented in [7] which recursively minimizes the sum of squared errors on a linear manifold. It is similar to
fast RLS algorithms since it iteratively calculates the optimum step size parameter. However, simulations

in [7] are presented for correlated data in a stationary environment only.

In the CGRA, we use the MVSS technique during the line search portion such that successive values of the
step size are calculated based on the autocorrelation of adjarensamples. Thus, when the filter is far

from the optimum and the autocorrelation of the error signal is large, the step size is large. This has the
effect of reducing the number of itdians needed to find the minimum of a particular conjugate direction

by increasing the line sech step size where appropriate and in this respect the CGRA is similar to the
SCGA. In effect the gradient direction is being reused several times to perform a one dimensional line
search. We may also limit the update rate such tmy R iterations of the line search are allowed. A
reducedR limits the complexity increase, but still provides improvements in performance that are compa-

rable to the FCGA with an increased gradigvindow size. Simulations in Section 3 illustrate that the
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CGRA is capable of achieving the same rate of convergence as the FCGA, but with a smaller gradient win-

dow, and thus a lower (overall) computational complexity.

A simplified version of the CGRA is also presented which invokes the conjugate gradient updat®every
samples. In between gradient calculations, the weight updates are reused thus avoiding the calculation of
the conjugate gradients altogether. This simplification results in an algorithm with complexity reduced by a
factor of P that still maintains a performance which is somewhere between the FCGA and NLMS in terms

of tracking and convergence, dependingfon

The remainder of this paper is organized as follows. In Section 2 the conjugate gradient method is
reviewed, the FCGA, MVSS and gradient reuse methods are introduced, the conjugate gradient reuse algo-
rithm and a simplified version of it are formulated and complexity issues are discussed. In Section 3, we
present some simulation results comparing the NLMS, RLS, MVSS, FCGA and CGRA algorithms in a

system identification context using correlated input data. Conclusions are presented in Section 4.

2.0 THE CONJUGATE GRADIENT ALGORITHM

Consider a transversal filter witin taps whereu(n) =[u(n), u(n-1),...uq-m+1)]" represent the tap input
vector at timen, w(n) =[w(n), w2(n),...wm(n)]T represents the tap weight vector at timandd(n) repre-
sents the desired response at tim&he algorithms proposed have a tap weight update equation based on

stepping in the direction of the negative gradient according to;

w(n+1) = w(n) +p(n)[-Of(w(n))]’ (1)
whereyh)is the time varying step size. The LMS algorithm uses an instantaneous value of gradient in
place of its ensemble average [8] and in the RLS algorithm, the true gradient is replaced by a data depen-
dent estimate using the inverse of the autocorrelation matrix. This significantly improves the convergence
but also adds complexity. The conjugate gradient algorithm is based on updating the tap weights with new

directions that are “non-ietfering”, inotherwords, conjugate to each other. The CGA can be used to min-
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imize a pure or approximated quadratic function by iteratively constructing direction vectors that are mutu-
ally conjugate and linearly independent [3]. This results in convergence properties that will minimize a
guadratic function ofm variables (i.e weights) in no more thamiterations and provide fast convergence.
The concept of “non-interfering” directions can be made mathematically explicit by considering a multidi-
mensional functiori(-). Let pointx represent the origin of a particular multidimensional system with a set
of linearly independent direction vectaxg,X4, X,,.. X1 Which represent the coordinate system. Artbe

an arbitrarym by 1 vector representing the distance from the origadong the direction vectorg. Then

any function valud(x+Ax) can be approximated by a Taylor series which can be truncated to a quadratic

function as follows;

f(x +Ax) = f(x)+zaf(X)Ax 126 f(X)Ax DX+ .

(2)
~c+Ax" Eb+%Ax 0 x
where
2
c=f(x) b= a:;(x) = Of(x) Q= gxfgf() = 0%(x) (3)

The matrixQ is them x m Hessian matrix of the function &t andb is them x 1 gradient of the function at
x. The approach in the conjugateaettion method is to obtain a set of &arlyindependent direction vec-
tors xg,X1, Xo,..Xm-1 Which are conjugate with respect @ so that the optimum solution vectaf mini-

mizes equation (2x° can be expressed as;
o _
X7 = OgXg+ 0xq+ ... +0,_1X,_1 (4)

and the constants are given by [9];

a= — (5)
xiTQxi

The conjugate gradient algorithm determines the appropriate orthogonal set of direction vectors and con-

stantsa;. If the direction vectors are mutually conjugate and linearly independent, then the initiabguess
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will converge to the optimunx® after m steps, that i,;=x°. The conjugate gradient algorithm can be

implemented in a block processing form as in [2], or as an on-line method described in this paper.

By modifying the CGA for anonquadraticfunction as given in p. 138 of [3], an algorithm can be derived
that does not require computation of the Hessian m@lrikssentially the second derivative is replaced by
the difference quotient;

Of(x, +op,) —Of(x,)

Qp= sz(xk)pk: G (6)

whereo is some small constant which can be set to one. The penalty for not calcufatsthattwo gra-
dient calculations must beegformed per itergon, one at the current value of the vecigrand one ay,
wherey, = x, +0p, and p, = —[Df(xk)]T is the negative of the gradienkatHowever, since the
computation of the Hessian matrix is of oro@(m3) and the calculation of a single gradient is of order
O(m?), the savings are substantial if the filter oraieis large. We now replace the dependent varia@le
given above with a set of weightg,(n) we obtain the following algorithm. Note thatrefers to the time

index andk refers to the conjugate direction count in the sequel.

Conjugate Gradient Algorithm Using 2 Gradient Calculations per iteration:

Initialization: wg(0)=0
For each iteratiom, do stepsl,2 and3.

Step 1. a)Starting with an initial weight vectowg(n) compute the following;

go(n) = [Of(we(m)]" (7)
yO(n) = Wo(n)—go(n) (8)
po(n) = [Of(ye(M)]" (9)
b) set dy(n) = gy(n) (10)

Step 2 Repeat fok=0,1,. . . m1
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a)set wy,,(n) = w,(n)+a,d.(n) wherexis the optimum step size; (11)

.
—gy (n)d, (n)
o = —— (12)
d (n)(gy(n) —py(n))

b) Compute the gradients at the new weight veetgr,
0+ 1(N) = [Of(w 4 (M)]' (13)
Yk + 1(n) = Wit 1(n)_gk+ 1(n) (14)
Prs 1(N) = [OF(Yye, 1 (M1 (15)

c) Unlessk=m-1, obtain the new direction vectord, , ;(n) = —g,, ;(n) + B, d,(n) where; (16)

_ GGy, 1 ()

9e(N)gy(n)

(17)

and repeaStep 2 (a)
Step 3 Replacewq(n) by wy,(n) and go back t&Gtep 1

B gives a measure of the rate of change of successive gradiefis> If, then the magnitude of a succes-

sive gradient vector is not decreasing, meaning that the minimum has been reaghedllis a termina-

tion condition for conjugate directiokin Step 2). The calculation ¢ is done according to the Fletcher-
Reeves method rather than the Polak-Ribiere method [9] since it tends to give a smoother convergence. In
the CGA algorithm above, it is assumed that the gradient calculations are true gradients in the sense that all
the data is available and that at leastonjugate directions can be calculated. However, this is computa-

tionally expensive and impractical if real time processing is required.

2.1 Fast Conjugate Gradient Method

It is shown in [1] that if a gradient estimate is constructed by averaging the instantaneous gradient esti-

mates over a window siz®, of past values, there will be at least rmmf,,) linearly independent direction
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vectors in the gradient estimate, whenas the filter order. Specifically the instantaneous estimate at time

nis replaced by a windowed estimate as follows;

n,—1

(w1 = (= ()| 3 (0w (9x(1=1) ~d(n=Dx(n -} (18)
i=0

With this gradient estimate, the CGA will terminaterif loops ofStep 2 At low values ofn,,, the gradient
estimates are poor resulting in inappropriate values of the stemgida addition, the computation afy

in equation (12) still requiresrn, multiplies and one division. By removing the calculationcgf and
replacing it with a constant value, the calculationpodindy are also no longer required, thus simplifying

the algorithm. However, in this paper, instead of using a fixed step size as proposed in [1], a normalized

step size is used,;

ay(n) = — (19)

x'(n)x(n) + €
where0<a <2 anc is some small value. This slight variation of the FCGA was used in all the simula-
tions. It should be pointed out that by avoiding the calculation of the optimum step size at each sub-itera-
tion, there is no guarantee that the successive direction vectors will be truly conjugate. This will result in

reduced convergence rates.

2.2 Dynamic Step Size Line Search Algorithm

Gradient computations are expensive camnga to computing the outpytfor a particular set of weights.

An improvement in performance over the FCGA can be obtained with a marginal increase in complexity
by reusing the estimated gradient direction vectpiseveral times until the resulting weight updates no
longer lead to a reduction in error. We search for the minimum of a conjugate direction before evaluating
the next conjugate dection and thus maintain true conjugacy of directions. A gradient direction is com-
puted and a search is performed for thenimumalong that line. This search can be optimized by exploit-
ing additional information about the surface which can be either kreyriori or estimated as the process
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continues. For simplicity, we assume that no additional information is available and thaathle emsists

of a series of steps which terminate near the minimum. There is a trade-off between the step size and the
accuracy of the search. If the step size is too small, we fawee accuracy but spend a lot of time perform-

ing the search, and vice versa. We are concerned nimretdhe number of steps taken to reach the mini-
mum of the line search rather than the accuracy and therefore wish to use the maximum allowable step size

when we are far from the minimum of the error surface.

The MVSS is a robust variable step size algorithm for LMS type filters that estimates the autocorrelation
of the error signal to determine when thénimum of the grformance surface is reached. When the error
correlation is large, dynamic step size control adjusts the step size to be large thus speeding up the conver-
gence. When the error correlation is small, as is the case in high noise environments, or when the minimum
is reached, the step size is reduced correspondingly. Specifically, the step size is updated by the following

formulas;

Mmax MK+ 1) 2 P oy
n(k+1) = Hrmin H(K+1) < Ui, ( 20)

() +YP°(K)  iHmin< KK+ 1) < Pay

where p(k) = 'p(k—1)+(1-T)e(Ke(k-1) (21)
0<(<1
and r<i (22)
y>0

The parametey controls the convergence time as well as the final misadjustment. The pardoeter

trols the averaging of the step size update dndontrols the averaging time constant of the filtered error
update. The parametgrgives a short time estimate of the error signal autocorrelation. Typical parameter
values ared=0.97,=0.99,y=1e-5 [4]. The advantage of the MVSS algorithm over the standard variable

step size (VSS) algorithm is its relative insensitivity to noisy signals due to the time average autocorrela-
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tion process. This technique is adopted in the CGRA to dynamically control the step size update during the
line search. A measure of the fmimum” of the line search can be obtained by examingjy ande(j-1)

wherej is the line search iteration count. Ife(j) <e(j—1)  then the algorithm is still searching for the
minimum of the performance surface along this particular directionelfj) = e(j—1) then the mini-
mum has been reached, at which point we exit the search and replace the initial weightwgettr the

one used to generag§-1).

2.3 Maximum and Minimum Step Sizes

Checking for§> 1 is a necessary step in the proposed algorithm. Proakis [11] demonstrated that the con-
jugate gradient algorithm resembles the operation of a first-order recursive filter whose duipgiven

by equation (16). Am-dimensional filter is in effect a set ofiidentical single-pole (low pass) filters oper-

ating in parallel which corresponds to filtering the gradients with a time-variant filter. Algorithms which
use linearly filtered noisy gradients caropide faster convergence than the conventional LMS algorithm.
Whengy are noisy however, itis possible thgf , 1 =9,  and the nigwill be close to or larger than 1.
Successive iterations of Step 2 will only serve to move the weight vector away from the optimum value
and make the algorithm unstable. In [11] the author found it necessary to limit the valg ©ofl in a
channel equalization experiment and obtained the conditions for stability which can be expressed as fol-

lows;

2(1+
O<p< ﬂ (23)
AmaX
whereO< B, <1 (24)

whereAax IS the maximum eigenvalue of the input data. Specifically, the gradient averaging extends the
upper limit of the region of stability of4 from 2/A,5t0 2(14+8)/Aax but B must be kept below 1. We

use this maximum step size eacérdtion and then impose a limit on the minimum step size.
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The complete algorithm is summarized below and uses triply indexed parameters. The panareieter
to the main iteration number, where the data is shifted in on a sample by sampleéiepigsents the con-

jugate direction iteration count afdepresents the line search iteoa count.

Conjugate Gradient Reuse Algorithm (CGRA)

Initialization: wg(0)=0, 5(0)=0.

For each iteratiom, do stepsl,2 and3.

Step 1. aShift in new data into vectox(n)
b) Starting with an initial weight vectawg(n), compute the initial error;

e(n) = wy' (Mx(n)—d(n) (25)

¢) Compute the maximum step size according to

1+By(n)
Mpa(n) = ————— (26)
x - (n)x(n)
d) Compute the initial windowed gradient estimate;
n,—1
_ T_(2 T . , .
ao(1) = (D))= ()| 3 (1o (Mx(n=) —d(n= (D) (27)
i=0
e) setdg (n)= -go(N) (28)
Step 2 Repeat fok=0,1,.n,-1 wheren, <m
a)set Yy o(N) = HpaN) and w, 4(n) = w,(n)
Repeat Step2b-1)through2b-4)for j=1,.n,, wheren,, <m
2b-2) Compute the new error output using
& (M) = Wi (Mx(n) —d(m) (30)

2b-3)Adjust the step size
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“ma)&n) ;“k,j(n) 2 “ma)&n)
My j(n) = Hmin(N) My, j(n) < Hpin(N) (32)

lek,j_l(n) + ijz(n) Hmin(N) < My j(n) < Hmaxn)

where p;(n) = I'p;_,(n) +(1-T)e(n)e_4(n) (32)
2b-4)if € j(n) > e j_l(n) then proceed t&tep 2c)else gotdStep 2b-1)

c) restore the “optimum” weight vectow, , ,(N) = w, j(n) for thisréction.

d) Unlessk=m,-1, set d,,,(n) = —g, . ,(n) + B (n)d, (n) ,where; (33)
T
B(n) = 9k+$(n)9k+1(n) and (34)
9 (Mg, (n)
G 1(M) = (0w (1= ()] 3 (s () —0DIX(D) (35)
i=n—-n,+1

If 5.(n)>1,go directly to Step 3), otherwise go to Step 2)

Step 3 Replacewg (n+1) byw,(n), and go back t&tep 1

The reuse of the gradient is performed3tep 2b-1)wvhere the newly computed direction vectlyis used

to successively update,. Note that d,(n) = —g,(n) = —[Df(wk(n))]T only during the first iter-

ation of the line sarch wherk=0 and that during successive iteratiodg,will change. During the line
search, we have imposed afoated limit of n,, steps of loo®2b) to reach the minimum of a particular con-
jugate direction. This factor was chosen assuming that the lowert,ththe poorer the estimate of the true
gradient and therefore, we wish to limit the number of steps in any particulatidimgo place a limit on

the number of steps taken should they be in the wrong direction. It was often observed in the simulations
that fewer tham,, successive steps @b) need to be taken before the minimum is reached and therefore
this limit is not too restrictive. If the minimum of a particular conjugate direction has not been reached
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before the next conjugate direction is calculated, or if the gradient estimate is poor, there is no guarantee
that the new directions will be conjugate with respect to one another. This will slow convergence, however,

it is still superior to the NLMS algorithm.

2.4 Simplified CGRA

The CRGA provides an averaged gradient which also points in the optimum direction towards the mini-
mum of the performance surface based on the available infayman the gradient window. If we assume

that the performance surface does not change too rapidly, then it is safe to assume thairfyythe con-

jugate gradientveightupdates (as opposed to direction updates), we can still step in the right direction and
at the same time avoid the calculation of the true gradient. If we only allow a gradient calculatiorPevery
input samples, we obtain a reduction in the complexity by a fact®@fer the CGRA. This is the basis of

the simplified CGRA. A variation of this idea was proposed by Hush and Salas [10] for reducing the com-
putational complexity of backpropagation weight updates in neural networks where they showed that the
convergence rate speed-up or slow-down is a related to the reuse rate. It is also possible to reuse the weight
updates several times per sample iteratiphowever, for the application described here, we only update
the weights once per sample with a gradient calculation eResgmples.The trade-off is that the conver-
gence rate will becompoorerin correlated environments &sincreases. However, it provides a basis for
trading computationally complexity for performance in the same way as the gradient windomy,Sizee
algorithm is the same as the CGRA except for the following changes which are indicated with an asterisk

in bold type;

Simplified Conjugate Gradient Reuse Algorithm (CGRA2)

Initialization: wg(0)=0, 5(0)=0.
*** count=Q

For each iteratiom, do stepsl,2 and3.

Step 1. aShift in new data into vectox(n)
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b) Starting with an initial weight vectawg(n), compute the initial error;
T
e(n = wy (n)x(n)—d(n) (36)

*** count=count+1
*** if count=P, continue, else goto Step 3)

Perform rest oStep 1)andStep 2) here

Step 3 ¥ If count=1, Aw,(n) = w,(n)—-w,(n) (37)
wo(n+1) = wy(n) (38)
*** glse wo(n+1) = wy(n)+Aw,(n) (39)

Replacewg (n+1) byw,(n), and go back té&tep 1
2.5 Complexity
In the regular CGA, the number of multiplications required in Step 13ri$2 per gradient calculation or
6m? total. In step 2), the number of multiplications per samplen'é6m2 + 6m) per sample for an over-
all total of 6m° + 12m° . In the CGRA, the number of multiplications per sampl&tep }is 2mn, + 1.
Step 2bis doneR times resulting in a complexity oh,R(2m+ 6)  multiplications per sample where
R< n,. Step 2d)is donen,-1 times for a complexity of (n,,—1)(2mn, + 3m)  multiplications per

sample. Summing all of these contributions, the overall complexity of the CGRA is equal to;

(2mn, +1) +n,R(2m+6) + (n,—1)(2mn, + 3m) (40)
multiplications per sample. FAdR =1 the CGRA will default to the FCGA algorithm and fog,=1, it
reverts to the NLMS algorithm. The standard RLS algorithm has complexitym%(&n). The CGRA has
a slight increase in computational complexity over the FCGA due to the gradient reuse IHgeever, if
fewer thanR successive steps @b) are needed before the minimum is reached, this estimate of complex-
ity would represent an upper bound. It is possible to limit the valuR @f some value smaller tham, to
provide a limited complexity increase. Simtitan results will show that by using a restrictBdit is possi-

ble to obtain the same performance with the CGRA as with the FCGA, even though the latter requires a
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larger window size to obtain this performance and is therefore more complex. The simplified CGRA only

performs gradient calculans every P samples, and this reduces the complexity to;

2mn,, +n, R(2m+ 6) + (n,, —1)(2mn, + 3m)
P

(m+1)+ (41)

multiplications per sample foR>2 . F&®=1, the algorithm reverts to the CGRA. Table 1 gives com-

parative complexities of the CGA, FCGA, CGRA, CGRA2 and RLS algorithmsrte$0, n,=5, R=2 and

P=3.
TABLE 1. Comparison of algorithm complexity.
Algorithm Mult./sample Mult./sample for m=50, n,,=5
CGA 6me + 12m2 780,000
FCGA (2mn,, + 1) + n,(2m+ 6) + (n,,— 1)(2mn,, + 3m) 3631
CGRA (2mn,, + 1) + n,R(2m+ 6) + (n,,— 1)(2mn,, + 3m) 4161
CGRA2 2mn, + nWR(Zm +6) +(n,—1)(2mn, + 3m) 1438
(m+1)+ 5
RLS ol + 4m 5200

3.0 SIMULATIONS

In this section, we apply the CGRA to the problem of system identification as illustrated in Figure 1. The
unknown system is modelled by an impulse 50 taps long which is obtained from an exponentially decaying
set of random values between 1. This choice is representative of a typical acoustic impulse response
obtained in conference rooms with small reverberation timesgpfi@ations in acoustic echo cancellers,
where both fast convergence and tracking are required. The input to the system is a coloured noise

sequence obtained from a single pole autoregressive process described by;

y(n) = 0.9y(n-1) +v(n) (42)

wherev(n) is a unit variance white noise sequence. This signal is then filtered by the unknown system and

finally, a small amplitude uncorrelated white gaussian noise signal is then added to the system output to
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produce a desired signal to noise ratio of 50 dB. In order to demonstrate the tracking capabilities of the
CGRA, the unknown system impulse response is changed halfway through the data sequence by multiply-
ing all coefficients by -1.0This change in the transfer function will cause a temporary increase in the
Mean Squared Error (MSE) as the algorithms try to readjust the weights to the new optimum weight vec-
tor. The ability of a particular algorithm to quickly re-adapt its weights is a measure of its trackifgp

mance. The Normalized Mean Squared Error (NMSE) convergence curves for the RLS, NLMS, FCGA,
MVSS and CGRA are plotted for comparison. The NMSE curves are obtained by averaging the error and

desired signals over 100 independent runs and then smoothing according to the following formula,

50
3 [e (k)]°

NMSH ) = 10log| ‘52— |dB (43)

3" 14, (K)°

r=0

where e (k) andd, (k) representthe averaged error and desired signals averaged over 100 independent
trials andr represents the window values over which theserages are then smoothed, in this case equal

to 50. A summary of the parameters used in the simulations are listed in Table 2.

TABLE 2. List of parameters used during simulations.

#Taps |
Algorithm m a A Mmax Hmin | € r % Nw | SNR
NLMS 50 0.5| 05 50 dB
RLS 50 0.997 50 dB
MVSS 50 1.0 le-5| 0.97 0.99 1e9 50 dB
FCGA 50 0.5 5 50 dB
CGRA 50 see eqn. (26 M 0.4 0.4 le2 3 50 dB
max
10

The normalized step size parameteis set to 0.5 for both the NLMS and modified FCGA algorithms. The
exponential forgetting factdr for the RLS is 0.997 since it was found in the simulations that a lower value

15
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caused instability. Th& parameter for the MVSS is large since the data sequences used are 16 bit integer
which is normalized with respect to 32768. The window sizes for the FCGA and CGRA are both setto 5

which provides a good performance/complexity trade-off. The minimum step size for the line search por-

tion of the CGRA was chosen L= “ﬂx . The signal to noise ratio of the desired siggakt to
¥nin = 1o

50 dB.

3.1 Results

Experiment #1 Comparison of Algorithms with Correlated InpuFigure 2 shows the results when the

input is coloured by the first order autoregressive process described by equation (42). During the first part
of the training, the RLS converges quickly owing to its insensitivity to eigenvalue spread. The FCGA and
CGRA also converge quickly but the CGRA is faster than the FCGA. Both the MVSS and NLMS have
poor convergence characteristics due to the correlated input data. At iteration 1000, the unknown system is
changed and the RLS algorithm has problems tracking due to the forgetting Aaloéaing close to 1 and

only manages to obtain a lower error than the NLMS and MVSS algorithms by iteration 1500. The CGRA
and FCGA convergence rates after iteration 1000 are almost identical to the initial convergence rate. The

CGRA obtains the best convergence rate of all the above algorithms.

Experiment #2 Comparison of FCGA and CGRAnN this experiment we compare convergence and track-

ing performance obtained for the FCGA and CGRA using different window sizes for reduced complexity.
The conditions for this experiment are the same as in Experiment #1 (correlated input) and the stepsize
limits for the CGRA are listed in Table 2. The results in Figure 3 show the performance of the CGRA with

a limited gradient reuse rat, as compared to the FCGA usimg,=5 andn,,=8. In this experiment, the
NMSE curves were obtained using the parameters listed in Table 2 which also indicates the relative com-

plexity.
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TABLE 3. Parameter and complexity comparison for FCGA (n,,=5 and 8) and CGRA (=5, R=2).

#Taps | Complexity
Algorithm m a g r % Nw | R | SNR | (mults/iter)
FCGA 50 0.5 5 50dB| 3631
FCGA 50 0.5 8 50dB| 8299
CGRA 50 04| 04| 1e2 5 2 50dB 4161

The gradient averaging windomy, in the FCGA had to be increased to 8 in order to obtain the same track-
ing convergence grformance as the CGRwith R=2 andn,,=5. In this example, the complexity of the

FCGA(n,,=8) is approximately 99% higher than the CGR{£5, R=2) for similar performance results

using correlated inpugignals.

Experiment #3 Simplified CGRA performancefhe conditions for this experiment are the same as in
Experiment #1 with parameters and complexity listed in Table 2. The results in Figure 4 shoerfitre p

mance of CGRA and simplified CGRA (here called CGRA2), as compared to the NLMS and FCGA.

TABLE 4. Comparative complexity using NLMS, FCGA, CGRA and CGRA2 (n,,~R=5).

#Taps | Complexity
Algorithm m a | & r |y Nw | R | P | SNR | (multsfiter)
NLMS 50 0.5 50dB| 102
FCGA 50 0.5 5 50dB| 3631
CGRA 50 04| 04| 1le2 5 5 1 50dB 5751
CGRA2 50 0.4| 0.4 1eZ 3 50dB 1968
CGRA2 50 04| 04 1le2 5 5 50dB 1201

The convergence curves illustrate that the CGRA outperforms all other algorithms. The convergence of the
CGRAZ2 algorithm §,,=5, R=P=5) outperform the NLMS algorithm 300 samples after the transfer function
change even with a reduced gradient update rate. The complexity of the CGRAZ, P=5) for this case

is approximately dactor of 5 less than the FCGA. There are some transients during the first few iterations
since the initial weight change estimates (which are relstgohes) will be inaccurate during this period.

The transients are higher for increasetoth during initial convergence and when the transfer function is
changed at iteration 1000 but will die out as the algorithm converges. The results indicate that depending
on the value oP, the convergence rate can be tailored to be fast or slow. Increasing the v&uedices
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the convergence rate (and complexity) such that it falls somewhere between the FCGA and NLMS algo-

rithms.

4.0 CONCLUSIONS

This paper has introduced a new version of the Conjugate Gradient Algorithm which is based on combin-
ing the gradient averaging window method with gradient reuse and dynamic step size to replace the opti-
mum step size as calculated in the conventional CGA. The CGRA has reduced complexity as compared to
the regular CGA and is slightly more complex than the FCGA depending on the number of iterations per-
formed during the one dimensional line search.The CGRA has been shown to have better convergence and
tracking properties than the FCGA in correlated nonstationary environments and can achieve the same per-
formance as the FCGA with reduced complexity. A simplified version of the proposed algorithm has also
been presented which computes the gradient elfesgpmples, thus obtaining a reduction in complexity

with a corresponding trade-off in convergence rate. The CGRA can be tailored to achieve a convergence
rate greater than the RLS algorithm without suffering from stability problems associated with an RLS
exponential forgetting factor.Although not described here, the CGRA method can also be extended to non-

linear neural networks as a to improve convergence speed and is the subject of future study.
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7.0 ILLUSTRATIONS

x(n)
Adaptive |
. Unknown
Filter
System
m taps
H1 H2
e(n) —yy(n)
- 2 2
System Output +
NoiseT
ONZ

FIGURE 1. System identification model. The input x(n) is either a white noise source w(n) or an AR(1)
process. The unknown channel consists of an exponentially decaying impulse 50 taps long. H1 is a 50 tap
transversal filter which is updated according to the NLMS, RLS, MVSS, FCGA or CGRA algorithm. An

uncorrelated noise source with variancesy? is added to the adaptive filter output y(n) to produce an SNR
of 50 dB.
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FIGURE 2. Experiment #1 results. Correlated noise input with a sudden change in the unknown system
transfer function at iteration 1000.
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FIGURE 3. Experiment #2 results. Comparison of FCGA and CGRA using a limited gradient reuse rate.
Correlated noise input with a sudden change in the unknown system transfer function at iteration 1000.

CGRA withR=2 andn,,=5
-———- FCGA withn,=5
.......... FCGA withn,=8.
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FIGURE 4. Experiment #3 results. Simplified CGRA performance results (CGRA2). Correlated noise
input with a sudden change in the unknown system transfer function at iteration 1000.

NLMS.
————  FCGA withn,=5.
—+—+—  CGRA withn,=5.
CGRA2 withn,,=5 andP=3.
CGRA2 withn,,=5 andP=5.
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