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ABSTRACT

A new algorithm is presented which combines the Fast Conjugate Gradient algorithm (FCGA), the Modi-

fied Variable Step Size (MVSS) algorithm, and gradient reuse to provide a convergence/tracking perfor-

mance/complexity trade-off. The proposed algorithm reuses the estimated conjugate direction vectordk(n)

at each iterationk to search for the minimum along one particular conjugate direction, and thus performs a

one dimensional line search. The variable step size reduces the number of iterations necessary to reach the

minimum during the line search portion. Improved convergence and tracking is obtained compared to the

NLMS, RLS, FCGA and MVSS algorithms when the input data is correlated and the environment is non-

stationary. By restricting the number of iterations performed during the line search, it is possible to achieve

the same performance as the FCGA but using a smallerwindow size, and therefore reduced complexity. A

simplified version of the proposed algorithm is also presented thatreusesweight updates (i.e the gradient)

to avoid calculating gradients and conjugate directions at every samplen. This simplified algorithm only

invokes the conjugate gradient update everyPth sample resulting in an overall complexity reduction by a

factor ofP as compared to the FCGA. Simulation results are also presented.

1.0 INTRODUCTION

The Conjugate Gradient Algorithm (CGA) has been shown to provide convergence speed comparable to

the recursive least square (RLS) algorithm even when the input signal autocorrelation matrix is ill condi-

tioned [1]. However, the CGA computational burden is still high compared to variations based on the Least
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Mean Square (LMS) algorithm [2]. Boray and Srinath [1] recently developed afast conjugate gradient

algorithm (FCGA) for adaptive filtering using an averaged instantaneous gradient over awindowof past

sample values. The advantages of this windowed approach are (i) better tracking and convergence is

achieved in nonstationary environments with correlated data compared to the RLS algorithm, and (ii) there

are no stability problems associated with an exponential forgetting factor as in the RLS algorithm. In this

paper, we propose a new algorithm which is based on extending the FCGA to include conjugate direction

reuse using dynamic step size control based on the Modified Variable Step Size (MVSS) algorithm [4]. We

call this new algorithm the conjugate gradient reuse algorithm (CGRA) since it performs a simple one

dimensional line search for the minimum along the estimated gradient direction. Other line search tech-

niques such as the cubic interpolation algorithm [5] and the scaled conjugate gradient algorithm (SCGA)

[6] have been proposed in the literature, however, these are formulated for full gradients and not for gradi-

ent estimates based on the technique described in [1]. A stochastic line search algorithm has also been pre-

sented in [7] which recursively minimizes the sum of squared errors on a linear manifold. It is similar to

fast RLS algorithms since it iteratively calculates the optimum step size parameter. However, simulations

in [7] are presented for correlated data in a stationary environment only.

In the CGRA, we use the MVSS technique during the line search portion such that successive values of the

step size are calculated based on the autocorrelation of adjacenterror samples. Thus, when the filter is far

from the optimum and the autocorrelation of the error signal is large, the step size is large. This has the

effect of reducing the number of iterations needed to find the minimum of a particular conjugate direction

by increasing the line search step size where appropriate and in this respect the CGRA is similar to the

SCGA. In effect the gradient direction is being reused several times to perform a one dimensional line

search. We may also limit the update rate such thatonly R iterations of the line search are allowed. A

reducedR limits the complexity increase, but still provides improvements in performance that are compa-

rable to the FCGA with an increased gradientwindow size. Simulations in Section 3 illustrate that the
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CGRA is capable of achieving the same rate of convergence as the FCGA, but with a smaller gradient win-

dow, and thus a lower (overall) computational complexity.

A simplified version of the CGRA is also presented which invokes the conjugate gradient update everyP

samples. In between gradient calculations, the weight updates are reused thus avoiding the calculation of

the conjugate gradients altogether. This simplification results in an algorithm with complexity reduced by a

factor ofP that still maintains a performance which is somewhere between the FCGA and NLMS in terms

of tracking and convergence, depending onP.

The remainder of this paper is organized as follows. In Section 2 the conjugate gradient method is

reviewed, the FCGA, MVSS and gradient reuse methods are introduced, the conjugate gradient reuse algo-

rithm and a simplified version of it are formulated and complexity issues are discussed. In Section 3, we

present some simulation results comparing the NLMS, RLS, MVSS, FCGA and CGRA algorithms in a

system identification context using correlated input data. Conclusions are presented in Section 4.

2.0 THE CONJUGATE GRADIENT ALGORITHM

Consider a transversal filter withm taps whereu(n) =[u(n), u(n-1),...u(n-m+1)]T represent the tap input

vector at timen, w(n) =[w1(n), w2(n),...wm(n)]T represents the tap weight vector at timen andd(n) repre-

sents the desired response at timen. The algorithms proposed have a tap weight update equation based on

stepping in the direction of the negative gradient according to;

( 1)

whereµ(n) is the time varying step size. The LMS algorithm uses an instantaneous value of gradient in

place of its ensemble average [8] and in the RLS algorithm, the true gradient is replaced by a data depen-

dent estimate using the inverse of the autocorrelation matrix. This significantly improves the convergence

but also adds complexity. The conjugate gradient algorithm is based on updating the tap weights with new

directions that are “non-interfering”, inotherwords, conjugate to each other. The CGA can be used to min-

w n 1+( ) w n( ) µ n( ) -∇f w n( )( )[ ]T
+=
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imize a pure or approximated quadratic function by iteratively constructing direction vectors that are mutu-

ally conjugate and linearly independent [3]. This results in convergence properties that will minimize a

quadratic function ofm variables (i.e weights) in no more thanm iterations and provide fast convergence.

The concept of “non-interfering” directions can be made mathematically explicit by considering a multidi-

mensional functionf(·). Let pointx represent the origin of a particular multidimensional system with a set

of linearly independent direction vectorsx0,x1, x2,...xm-1 which represent the coordinate system. Let∆x be

an arbitrarym by 1 vector representing the distance from the originx along the direction vectorsxi. Then

any function valuef(x+∆x) can be approximated by a Taylor series which can be truncated to a quadratic

function as follows;

( 2)

where

( 3)

The matrixQ is them × m Hessian matrix of the function atx, andb is them × 1 gradient of the function at

x. The approach in the conjugate direction method is to obtain a set of linearlyindependent direction vec-

tors x0,x1, x2,...xm-1 which are conjugate with respect toQ so that the optimum solution vectorxo mini-

mizes equation (2).xo can be expressed as;

( 4)

and the constants are given by [9];

( 5)

The conjugate gradient algorithm determines the appropriate orthogonal set of direction vectors and con-

stantsαi. If the direction vectors are mutually conjugate and linearly independent, then the initial guessx
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will converge to the optimumxo after m steps, that isxm=xo. The conjugate gradient algorithm can be

implemented in a block processing form as in [2], or as an on-line method described in this paper.

By modifying the CGA for anonquadraticfunction as given in p. 138 of [3], an algorithm can be derived

that does not require computation of the Hessian matrixQ. Essentially the second derivative is replaced by

the difference quotient;

( 6)

whereσ is some small constant which can be set to one. The penalty for not calculatingQ is thattwo gra-

dient calculations must be performed per iteration, one at the current value of the vectorxk and one atyk

where and is the negative of the gradient atxk. However, since the

computation of the Hessian matrix is of orderO(m3) and the calculation of a single gradient is of order

O(m2), the savings are substantial if the filter orderm is large. We now replace the dependent variablexk

given above with a set of weightswk(n) we obtain the following algorithm. Note thatn refers to the time

index andk refers to the conjugate direction count in the sequel.

Conjugate Gradient Algorithm Using 2 Gradient Calculations per iteration:

Initialization: w0(0)=0

For each iterationn, do steps1,2 and3.

Step 1. a)Starting with an initial weight vectorw0(n) compute the following;

( 7)

( 8)

( 9)

b) set ( 10)

Step 2. Repeat fork=0,1,. . . ,m-1

Qpk ∇=
2
f xk( )pk

∇f xk σpk+( ) ∇f xk( )–

σ
------------------------------------------------------≈

yk xk σpk+= pk ∇f xk( )[ ]–
T

=

g0 n( ) ∇ f w0 n( )( )[ ]T
=

y0 n( ) w0 n( ) g0– n( )=

p0 n( ) ∇f y0 n( )( )[ ]T
=

d0 n( ) g0 n( )=
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a) set whereαk is the optimum step size; ( 11)

( 12)

b) Compute the gradients at the new weight vectorwk+1

( 13)

( 14)

( 15)

c) Unlessk=m-1, obtain the new direction vector where; ( 16)

( 17)

and repeatStep 2 (a).
Step 3. Replacew0(n) by wm(n) and go back toStep 1.

βk gives a measure of the rate of change of successive gradients. Ifβk > 1, then the magnitude of a succes-

sive gradient vector is not decreasing, meaning that the minimum has been reached. Ifβk > 1 is a termina-

tion condition for conjugate directionk in Step 2). The calculation ofβk is done according to the Fletcher-

Reeves method rather than the Polak-Ribiere method [9] since it tends to give a smoother convergence. In

the CGA algorithm above, it is assumed that the gradient calculations are true gradients in the sense that all

the data is available and that at leastm conjugate directions can be calculated. However, this is computa-

tionally expensive and impractical if real time processing is required.

2.1 Fast Conjugate Gradient Method

It is shown in [1] that if a gradient estimate is constructed by averaging the instantaneous gradient esti-

mates over a window sizenw of past values, there will be at least min(m,nw) linearly independent direction

wk 1+ n( ) wk n( ) αkdk n( )+=

αk

gk
T n( )dk n( )–

dk
T

n( ) gk n( ) pk n( )–( )
----------------------------------------------------=

gk 1+ n( ) ∇f wk 1+ n( )( )[ ]T
=

yk 1+ n( ) wk 1+ n( ) gk 1+– n( )=

pk 1+ n( ) ∇f yk 1+ n( )( )[ ]T
=

dk 1+ n( ) g– k 1+ n( ) βkdk n( )+=

βk

gk 1+
T

n( )gk 1+ n( )

gk
T
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vectors in the gradient estimate, wherem is the filter order. Specifically the instantaneous estimate at time

n is replaced by a windowed estimate as follows;

( 18)

With this gradient estimate, the CGA will terminate innw loops ofStep 2. At low values ofnw, the gradient

estimates are poor resulting in inappropriate values of the step sizeαk. In addition, the computation ofαk

in equation (12) still requires 2mnw multiplies and one division. By removing the calculation ofαk and

replacing it with a constant value, the calculation ofp andy are also no longer required, thus simplifying

the algorithm. However, in this paper, instead of using a fixed step size as proposed in [1], a normalized

step size is used;

( 19)

where andε is some small value. This slight variation of the FCGA was used in all the simula-

tions. It should be pointed out that by avoiding the calculation of the optimum step size at each sub-itera-

tion, there is no guarantee that the successive direction vectors will be truly conjugate. This will result in

reduced convergence rates.

2.2 Dynamic Step Size Line Search Algorithm

Gradient computations are expensive compared to computing the outputy for a particular set of weightsw.

An improvement in performance over the FCGA can be obtained with a marginal increase in complexity

by reusing the estimated gradient direction vectordk several times until the resulting weight updates no

longer lead to a reduction in error. We search for the minimum of a conjugate direction before evaluating

the next conjugate direction and thus maintain true conjugacy of directions. A gradient direction is com-

puted and a search is performed for theminimumalong that line. This search can be optimized by exploit-

ing additional information about the surface which can be either knowna priori or estimated as the process

∇f w n( )( )[ ]T g n( ) 2
nw
------

 
 ≈= wT

n( )x n i–( ) d n i–( )–[ ]x n i–( ){ }
i 0=
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∑

αk
˜ n( ) α

x
T n( )x n( ) ε+

----------------------------------=

0 α 2< <
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continues. For simplicity, we assume that no additional information is available and that the search consists

of a series of steps which terminate near the minimum. There is a trade-off between the step size and the

accuracy of the search. If the step size is too small, we havegood accuracy but spend a lot of time perform-

ing the search, and vice versa. We are concerned more about the number of steps taken to reach the mini-

mum of the line search rather than the accuracy and therefore wish to use the maximum allowable step size

when we are far from the minimum of the error surface.

The MVSS is a robust variable step size algorithm for LMS type filters that estimates the autocorrelation

of the error signal to determine when the minimum of the performance surface is reached. When the error

correlation is large, dynamic step size control adjusts the step size to be large thus speeding up the conver-

gence. When the error correlation is small, as is the case in high noise environments, or when the minimum

is reached, the step size is reduced correspondingly. Specifically, the step size is updated by the following

formulas;

( 20)

where ( 21)

and ( 22)

The parameter γ controls the convergence time as well as the final misadjustment. The parameterζ con-

trols the averaging of the step size update andΓ controls the averaging time constant of the filtered error

update. The parameterρ gives a short time estimate of the error signal autocorrelation. Typical parameter

values areζ=0.97,Γ=0.99,γ=1e-5 [4]. The advantage of the MVSS algorithm over the standard variable

step size (VSS) algorithm is its relative insensitivity to noisy signals due to the time average autocorrela-

µ k 1+( )

µmax µ k 1+( ) µmax≥;

µmin µ k 1+( ) µmin≤;

ζµ k( ) γρ2
k( )+ µmin µ k 1+( ) µmax< <;






=

ρ k( ) Γρ k 1–( ) 1 Γ–( )e k( )e k 1–( )+=

0 ζ 1< <
Γ 1<
γ 0>





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tion process. This technique is adopted in the CGRA to dynamically control the step size update during the

line search. A measure of the “minimum” of the line search can be obtained by examininge(j) ande(j-1)

wherej is the line search iteration count. If then the algorithm is still searching for the

minimum of the performance surface along this particular direction. If then the mini-

mum has been reached, at which point we exit the search and replace the initial weight vectorwo with the

one used to generatee(j-1).

2.3 Maximum and Minimum Step Sizes

Checking forβk > 1 is a necessary step in the proposed algorithm. Proakis [11] demonstrated that the con-

jugate gradient algorithm resembles the operation of a first-order recursive filter whose outputdk is given

by equation (16). Anm-dimensional filter is in effect a set ofm identical single-pole (low pass) filters oper-

ating in parallel which corresponds to filtering the gradients with a time-variant filter. Algorithms which

use linearly filtered noisy gradients can provide faster convergence than the conventional LMS algorithm.

Whengk are noisy however, it is possible that and the newβk will be close to or larger than 1.

Successive iterations of Step 2 will only serve to move the weight vector away from the optimum value

and make the algorithm unstable. In [11] the author found it necessary to limit the value ofβk < 1 in a

channel equalization experiment and obtained the conditions for stability which can be expressed as fol-

lows;

( 23)

where ( 24)

whereλmax is the maximum eigenvalue of the input data. Specifically, the gradient averaging extends the

upper limit of the region of stability ofµk from 2/λmax to 2(1+βk)/λmax but βk must be kept below 1. We

use this maximum step size each iteration and then impose a limit on the minimum step size.

e j( ) e j 1–( )<

e j( ) e j 1–( )≥

gk 1+ gk≈

0 µk

2 1 βk+( )
λmax

-----------------------< <

0 βk 1< <
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The complete algorithm is summarized below and uses triply indexed parameters. The parametern refers

to the main iteration number, where the data is shifted in on a sample by sample basis,k represents the con-

jugate direction iteration count andj represents the line search iteration count.

Conjugate Gradient Reuse Algorithm (CGRA):

Initialization: w0(0)=0, βk(0)=0.

For each iterationn, do steps1,2 and3.

Step 1. a)Shift in new data into vectorx(n)
b) Starting with an initial weight vectorw0(n), compute the initial error;

( 25)

c) Compute the maximum step size according to

( 26)

d) Compute the initial windowed gradient estimate;

( 27)

e) setd0 (n)= -g0(n) ( 28)

Step 2. Repeat fork=0,1,.nw-1 wherenw ≤ m

a) set and

Repeat Steps2b-1) through2b-4)for j=1,. nw wherenw ≤ m

2b-1)Set ( 29)

2b-2)Compute the new error output using

( 30)

2b-3)Adjust the step size

e n( ) w0
T

n( )x n( ) d n( )–=

µmax n( )
1 βk n( )+

x
T n( )x n( )

-------------------------=

g0 n( ) ∇f w0 n( )( )[ ]T 2
nw
------ 

  w0
T

n( )x n i–( ) d n i–( )–[ ]x n i–( ){ }
i 0=

nw 1–

∑==

µk 0, n( ) µmax n( )= wk 0, n( ) wk n( )=

wk j, n( ) wk j 1–, n( ) µk j, n( )dk n( )+=

ek j, n( ) wk j,
T

n( )x n( ) d n( )–=
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( 31)

where ( 32)

2b-4) if then proceed toStep 2c), else gotoStep 2b-1).

c) restore the “optimum” weight vector for this direction.

d) Unlessk=mw-1, set ,where; ( 33)

and ( 34)

( 35)

I f βk (n) > 1, go directly to Step 3), otherwise go to Step 2)

Step 3. Replacew0 (n+1) bywk(n), and go back toStep 1.

The reuse of the gradient is performed inStep 2b-1)where the newly computed direction vectordk is used

to successively updatewk. Note that only during the first iter-

ation of the line search whenk=0 and that during successive iterations,dk will change. During the line

search, we have imposed an allowed limit of nw steps of loop2b) to reach the minimum of a particular con-

jugate direction. This factor was chosen assuming that the lower thenw, the poorer the estimate of the true

gradient and therefore, we wish to limit the number of steps in any particular direction to place a limit on

the number of steps taken should they be in the wrong direction. It was often observed in the simulations

that fewer thannw successive steps of2b) need to be taken before the minimum is reached and therefore

this limit is not too restrictive. If the minimum of a particular conjugate direction has not been reached

µk j, n( )

µmax n( ) µk j, n( ) µmax n( )≥;

µmin n( ) µk j, n( ) µmin n( )≤;

ζµk j 1–, n( ) γρ j
2

n( )+ µmin n( ) µk j, n( ) µmax n( )< <;





=

ρj n( ) Γρ j 1– n( ) 1 Γ–( )ej n( )ej 1– n( )+=
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before the next conjugate direction is calculated, or if the gradient estimate is poor, there is no guarantee

that the new directions will be conjugate with respect to one another. This will slow convergence, however,

it is still superior to the NLMS algorithm.

2.4 Simplified CGRA

The CRGA provides an averaged gradient which also points in the optimum direction towards the mini-

mum of the performance surface based on the available information in the gradient window. If we assume

that the performance surface does not change too rapidly, then it is safe to assume that by reusing the con-

jugate gradientweightupdates (as opposed to direction updates), we can still step in the right direction and

at the same time avoid the calculation of the true gradient. If we only allow a gradient calculation everyP

input samples, we obtain a reduction in the complexity by a factor ofP over the CGRA. This is the basis of

the simplified CGRA. A variation of this idea was proposed by Hush and Salas [10] for reducing the com-

putational complexity of backpropagation weight updates in neural networks where they showed that the

convergence rate speed-up or slow-down is a related to the reuse rate. It is also possible to reuse the weight

updates several times per sample iterationn, however, for the application described here, we only update

the weights once per sample with a gradient calculation everyP samples.The trade-off is that the conver-

gence rate will becomepoorer in correlated environments asP increases. However, it provides a basis for

trading computationally complexity for performance in the same way as the gradient window sizenw. The

algorithm is the same as the CGRA except for the following changes which are indicated with an asterisk

in bold type;

Simplified Conjugate Gradient Reuse Algorithm (CGRA2):

Initialization: w0(0)=0, βk(0)=0.

*** count=0;

For each iterationn, do steps1,2 and3.

Step 1. a)Shift in new data into vectorx(n)
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b) Starting with an initial weight vectorw0(n), compute the initial error;

( 36)

*** count=count+1
*** if count=P, continue, else goto Step 3)

Perform rest ofStep 1)andStep 2) here

Step 3. *** If count=1, ( 37)

( 38)

*** else ( 39)

Replacew0 (n+1) bywk(n), and go back toStep 1.

2.5 Complexity

In the regular CGA, the number of multiplications required in Step 1) is per gradient calculation or

total. In step 2), the number of multiplications per sample is per sample for an over-

all total of . In the CGRA, the number of multiplications per sample inStep 1) is .

Step 2bis doneR times resulting in a complexity of multiplications per sample where

. Step 2d)is donenw-1 times for a complexity of multiplications per

sample. Summing all of these contributions, the overall complexity of the CGRA is equal to;

( 40)

multiplications per sample. ForR =1 the CGRA will default to the FCGA algorithm and fornw=1, it

reverts to the NLMS algorithm. The standard RLS algorithm has complexity of (2m2+4m). The CGRA has

a slight increase in computational complexity over the FCGA due to the gradient reuse rateR. However, if

fewer thanR successive steps of2b) are needed before the minimum is reached, this estimate of complex-

ity would represent an upper bound. It is possible to limit the value ofR to some value smaller thannw to

provide a limited complexity increase. Simulation results will show that by using a restrictedR, it is possi-

ble to obtain the same performance with the CGRA as with the FCGA, even though the latter requires a

e n( ) w0
T

n( )x n( ) d n( )–=

∆wk n( ) wk n( ) wo n( )–=

wo n 1+( ) wk n( )=

wo n 1+( ) wo n( ) ∆wk n( )+=

3m
2

6m
2

m 6m
2

6m+( )

6m
3

12m
2

+ 2mnw 1+

nwR 2m 6+( )

R nw≤ nw 1–( ) 2mnw 3m+( )

2mnw 1+( ) nwR 2m 6+( ) nw 1–( ) 2mnw 3m+( )+ +



14 Revision: July 10, 2003

larger window size to obtain this performance and is therefore more complex. The simplified CGRA only

performs gradient calculations every P samples, and this reduces the complexity to;

( 41)

multiplications per sample for . ForR=1, the algorithm reverts to the CGRA. Table 1 gives com-

parative complexities of the CGA, FCGA, CGRA, CGRA2 and RLS algorithms form=50,nw=5, R=2 and

P=3.

3.0 SIMULATIONS

In this section, we apply the CGRA to the problem of system identification as illustrated in Figure 1. The

unknown system is modelled by an impulse 50 taps long which is obtained from an exponentially decaying

set of random values between ±1. This choice is representative of a typical acoustic impulse response

obtained in conference rooms with small reverberation times for applications in acoustic echo cancellers,

where both fast convergence and tracking are required. The input to the system is a coloured noise

sequence obtained from a single pole autoregressive process described by;

( 42)

wherev(n) is a unit variance white noise sequence. This signal is then filtered by the unknown system and

finally, a small amplitude uncorrelated white gaussian noise signal is then added to the system output to

TABLE 1. Comparison of algorithm complexity.

Algorithm Mult./sample Mult./sample for m=50, nw=5

CGA 780,000

FCGA 3631

CGRA 4161

CGRA2 1438

RLS 5200

m 1+( )
2mnw n+

w
R 2m 6+( ) nw 1–( ) 2mnw 3m+( )+

P
-----------------------------------------------------------------------------------------------------------------+

R 2≥

6m
3

12m
2

+

2mnw 1+( ) nw 2m 6+( ) nw 1–( ) 2mnw 3m+( )+ +

2mnw 1+( ) nwR 2m 6+( ) nw 1–( ) 2mnw 3m+( )+ +

m 1+( )
2mnw n+

w
R 2m 6+( ) nw 1–( ) 2mnw 3m+( )+

P
-----------------------------------------------------------------------------------------------------------------+
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4m+
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produce a desired signal to noise ratio of 50 dB. In order to demonstrate the tracking capabilities of the

CGRA, the unknown system impulse response is changed halfway through the data sequence by multiply-

ing all coefficients by -1.0.This change in the transfer function will cause a temporary increase in the

Mean Squared Error (MSE) as the algorithms try to readjust the weights to the new optimum weight vec-

tor. The ability of a particular algorithm to quickly re-adapt its weights is a measure of its tracking perfor-

mance. The Normalized Mean Squared Error (NMSE) convergence curves for the RLS, NLMS, FCGA,

MVSS and CGRA are plotted for comparison. The NMSE curves are obtained by averaging the error and

desired signals over 100 independent runs and then smoothing according to the following formula,

( 43)

where and represent the averaged error and desired signals averaged over 100 independent

trials andr represents the window values over which these averages are then smoothed, in this case equal

to 50. A summary of the parameters used in the simulations are listed in Table 2.

The normalized step size parameter α is set to 0.5 for both the NLMS and modified FCGA algorithms. The

exponential forgetting factorλ for the RLS is 0.997 since it was found in the simulations that a lower value

TABLE 2. List of parameters used during simulations.

Algorithm
#Taps

m α λ µmax µmin ξ Γ γ nw SNR

NLMS 50 0.5 0.5 50 dB

RLS 50 0.997 50 dB

MVSS 50 1.0 1e-5 0.97 0.99 1e9 50 dB

FCGA 50 0.5 5 50 dB

CGRA 50 see eqn. (26) 0.4 0.4 1e2 5 50 dB

NMSE n( ) 10

er k( )[ ]
2

r 0=

50

∑

dr k( )[ ]
2

r 0=

50

∑

------------------------------

 
 
 
 
 
 
 
 

dBlog=

er k( ) dr k( )

µmax

10
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caused instability. Theξ parameter for the MVSS is large since the data sequences used are 16 bit integer

which is normalized with respect to 32768. The window sizes for the FCGA and CGRA are both set to 5

which provides a good performance/complexity trade-off. The minimum step size for the line search por-

tion of the CGRA was chosen as . The signal to noise ratio of the desired signald is set to

50 dB.

3.1 Results

Experiment #1 Comparison of Algorithms with Correlated Input: Figure 2 shows the results when the

input is coloured by the first order autoregressive process described by equation (42). During the first part

of the training, the RLS converges quickly owing to its insensitivity to eigenvalue spread. The FCGA and

CGRA also converge quickly but the CGRA is faster than the FCGA. Both the MVSS and NLMS have

poor convergence characteristics due to the correlated input data. At iteration 1000, the unknown system is

changed and the RLS algorithm has problems tracking due to the forgetting factorλ being close to 1 and

only manages to obtain a lower error than the NLMS and MVSS algorithms by iteration 1500. The CGRA

and FCGA convergence rates after iteration 1000 are almost identical to the initial convergence rate. The

CGRA obtains the best convergence rate of all the above algorithms.

Experiment #2 Comparison of FCGA and CGRA: In this experiment we compare convergence and track-

ing performance obtained for the FCGA and CGRA using different window sizes for reduced complexity.

The conditions for this experiment are the same as in Experiment #1 (correlated input) and the stepsize

limits for the CGRA are listed in Table 2. The results in Figure 3 show the performance of the CGRA with

a limited gradient reuse rateR, as compared to the FCGA usingnw=5 andnw=8. In this experiment, the

NMSE curves were obtained using the parameters listed in Table 2 which also indicates the relative com-

plexity.

µmin

µmax

10
-----------=
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The gradient averaging windownw in the FCGA had to be increased to 8 in order to obtain the same track-

ing convergence performance as the CGRAwith R=2 andnw=5. In this example, the complexity of the

FCGA(nw=8) is approximately 99% higher than the CGRA(nw=5, R=2) for similar performance results

using correlated inputsignals.

Experiment #3 Simplified CGRA performance:The conditions for this experiment are the same as in

Experiment #1 with parameters and complexity listed in Table 2. The results in Figure 4 show the perfor-

mance of CGRA and simplified CGRA (here called CGRA2), as compared to the NLMS and FCGA.

The convergence curves illustrate that the CGRA outperforms all other algorithms. The convergence of the

CGRA2 algorithm (nw=5, R=P=5) outperform the NLMS algorithm 300 samples after the transfer function

change even with a reduced gradient update rate. The complexity of the CGRA2 (nw=5, P=5) for this case

is approximately afactor of 5 less than the FCGA. There are some transients during the first few iterations

since the initial weight change estimates (which are reusedP times) will be inaccurate during this period.

The transients are higher for increasedP both during initial convergence and when the transfer function is

changed at iteration 1000 but will die out as the algorithm converges. The results indicate that depending

on the value ofP, the convergence rate can be tailored to be fast or slow. Increasing the value ofP reduces

TABLE 3. Parameter and complexity comparison for FCGA ( nw=5 and 8) and CGRA (nw=5, R=2).

Algorithm
#Taps

m α ξ Γ γ nw R SNR
Complexity
(mults/iter)

FCGA 50 0.5 5 50 dB 3631

FCGA 50 0.5 8 50 dB 8299

CGRA 50 0.4 0.4 1e2 5 2 50 dB 4161

TABLE 4. Comparative complexity using NLMS, FCGA, CGRA and CGRA2 (nw=R=5).

Algorithm
#Taps

m α ξ Γ γ nw R P SNR
Complexity
(mults/iter)

NLMS 50 0.5 50 dB 102

FCGA 50 0.5 5 50 dB 3631

CGRA 50 0.4 0.4 1e2 5 5 1 50 dB 5751

CGRA2 50 0.4 0.4 1e2 5 5 3 50 dB 1968

CGRA2 50 0.4 0.4 1e2 5 5 5 50 dB 1201
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the convergence rate (and complexity) such that it falls somewhere between the FCGA and NLMS algo-

rithms.

4.0 CONCLUSIONS

This paper has introduced a new version of the Conjugate Gradient Algorithm which is based on combin-

ing the gradient averaging window method with gradient reuse and dynamic step size to replace the opti-

mum step size as calculated in the conventional CGA. The CGRA has reduced complexity as compared to

the regular CGA and is slightly more complex than the FCGA depending on the number of iterations per-

formed during the one dimensional line search.The CGRA has been shown to have better convergence and

tracking properties than the FCGA in correlated nonstationary environments and can achieve the same per-

formance as the FCGA with reduced complexity. A simplified version of the proposed algorithm has also

been presented which computes the gradient everyP samples, thus obtaining a reduction in complexity

with a corresponding trade-off in convergence rate. The CGRA can be tailored to achieve a convergence

rate greater than the RLS algorithm without suffering from stability problems associated with an RLS

exponential forgetting factor.Although not described here, the CGRA method can also be extended to non-

linear neural networks as a to improve convergence speed and is the subject of future study.
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7.0 ILLUSTRATIONS

FIGURE 1. System identification model. The input x(n) is either a white noise source w(n) or an AR(1)
process. The unknown channel consists of an exponentially decaying impulse 50 taps long. H1 is a 50 tap
transversal filter which is updated according to the NLMS, RLS, MVSS, FCGA or CGRA algorithm. An
uncorrelated noise source with varianceσN

2 is added to the adaptive filter output y(n) to produce an SNR
of 50 dB.
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FIGURE 2. Experiment #1 results. Correlated noise input with a sudden change in the unknown system
transfer function at iteration 1000.
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FIGURE 3. Experiment #2 results. Comparison of FCGA and CGRA using a limited gradient reuse rate.
Correlated noise input with a sudden change in the unknown system transfer function at iteration 1000.
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FIGURE 4. Experiment #3 results. Simplified CGRA performance results (CGRA2). Correlated noise
input with a sudden change in the unknown system transfer function at iteration 1000.
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