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1.0 Introduction

The objective of this paper is to present a two stage neural filter and training algorithm for application in

handsfree telephone acoustic echo cancellers, where the loudspeaker nonlinearity limits the achievable

echo cancellation. One of the limitations to achieving a high steady stateEcho Return Loss Enhancement

(ERLE) in linearacoustic echo cancellers(AECs) is loudspeaker nonlinearity [1]. Hence a two stage neu-

ral filter is developed to combat theeffects of loudspeaker nonlinearity, consisting of atapped delay line

neural network(TDNN) arranged in parallel with a linearFinite Impulse Response(FIR) filter [2].

Simplicity of design is of utmost importance in the development AECs since the filter lengths required to

cancel acoustic echoes are typically several hundreds of taps long [3]. It is therefore paramount that any

nonlinear structure and training algorithms also be of low complexity. Thegradient backpropagation(BP)

algorithm [4] is an efficient training algorithm for neural networks, however, like its linear counterpart the

Least Mean Squares(LMS) algorithm, it has slow convergence when a coloured signal like speech is used

for training [5]. Training methods based on theconjugate gradient(CG) algorithm [6],[7] can be applied

to neural networks to mitigate the slow convergence however, the complexity is higher than the BP algo-
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rithm. We propose a modified form of the partial CG algorithm [8] which uses a selectable gradient win-

dow and a fixed step size to train the network and provide a trade-off between complexity and speed.

The rest of the paper is organized as follows. In Section 2 the Acoustic Echo Cancellation problem is

reviewed and the limitations to achievable steady state ERLE due to loudspeaker nonlinearity in a typical

handsfree telephone(HFT) is presented. A two stage neural filter is developed in Section 3 and is shown to

have improved steady state modelling accuracy. In Section 4, a fast conjugate gradient algorithm is devel-

oped, by modifying the partial conjugate gradient method to include a gradient window and fixed step size.

Experimental results using real speech signals in a handsfree telephone conference environment are pre-

sented. Finally in Section 5 concluding remarks are presented.

2.0 Acoustic Echo Cancellation

A complete survey of the acoustic echo cancellation literature is beyond the scope of this paper, however,

references [3] and [9] provide an exhaustive summary of over 100 papers in thisarea. An acoustic echo

canceller for handsfree telephony must be capable of identifying a changingLoudspeaker-Room-Enclo-

sure-Room(LREM) response which includes a room transfer function, a nonlinear loudspeaker and other

components a shown in Figure 1. The adaptive filter takes the reference signalr(n), generates an echo rep-
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FIGURE 1. The LREM consists of both linear and nonlinear components.
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lica y(n) and subtracts it from the primarysignalp(n) to generate an error signal e(n). Conventional AECs

use linear FIR filters to model the LREM and cancel the unwanted echo signal, however, this architecture

is incapable of reducing nonlinear loudspeaker distortion. A commonly used AEC performance metric is

ERLE, which provides a measure of how much the echo is attenuated in the absence of measurement noise,

defined by [10]

( 1)

whereσ2
p andσ2

e refer to the variances of the primary and errorsignals respectively andE is the statistical

expectation operator. For on-line measurements, the later expression in (1) can be used as an approxima-

tion to compute the ERLE at timen wherenw is the size of an averaging window. Typically high values of

ERLE up to 45 dB are proposed for primary signals with large transmission delays [11], however current

technology is unable to provide such high attenuations hence additional variable losses in the receive and/

or transmit path are frequently used. There is no mention in the literature of how physical limitations such

as loudspeaker nonlinearity will affect the practical achievement of such high ERLE values without the

inclusion of these additional losses.

2.1 AEC Performance Limitations

The steady state ERLE limitations of AECs in HFTs include [1] (i) undermodelling of the LREM (ii)

enclosure vibrationeffects (iii) transducer nonlinearities (iv) room noise, DSP noise, finite precision and

truncation. We concentrate here on nonlinearity and undermodelling.

Loudspeaker Nonlinearity. It has been shown [1] that the achievable steady state ERLE in desktop

HFTs is limited as a function of the volume of the applied loudspeaker signal; at low volumes the ERLE is
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limited by noise and offsets and at medium to high volumes, nonlinearity in the loudspeaker and enclosure

vibration effects dominate. For example, apower spectral density(PSD) plot of the primary signal

obtained from a real HFT fed with a reference signal consisting of bandlimited noise is shown in Figure 2.

The reference signal level is increased such that asound pressure level(SPL) of between 60 and 100 dB is

obtained as measured 0.5 m above the loudspeaker. An increasing volume level generates increasing non-

linear distortion products both in-band (i.e. 200-3400Hz) and out-of-band (3400-8000 Hz). The in-band

distortion products are masked by the primary signal level, however, the out-of-band nonlinear and distor-

tion products can be seen to increase with volume.

The effect that thenonlinear products have on the achievable steady state ERLE is illustrated in Figure 3,

which shows a comparison of the steady state ERLE vs. volume of six commercially available HFTs. The

converged ERLE values are obtained by training a 1000 tap FIR filter with theNormalized LMS(NLMS)

algorithm [5] for 80,000 iterations, using a normalized step size of 0.5, and averaging over the last 5000

iterations.

Undermodelling. An FIR structure can be used to model a transfer function where the number of param-

eters in the candidate system is less that required to exactly identify the system. This gives the undermod-

FIGURE 2. Primary signal PSD. Out-of-band components increase in level as the volume is
increased from 60 to 100 dB SPL (as measured 0.5 m above loudspeaker).
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elled system: . Poltmann [12] showed that the achievable modelling error is a function

of both the step size and magnitude of the modelled and undermodelled coefficients. For asystem mod-

elled by an FIR transfer function the achievable steady state ERLE can be calculated from;

( 2)

where represents the power in the modelled coefficients up to orderM-1 and represents the

power in the tail portion of the LREM fromM to infinity. If µ is set to zero, (2) is equal to the Total

Impulse Power to the uncancelled Tail Power (TIP/TP) ratio originally proposed by Knappe and Goubran

[13]. The TIP/TP ratio defines the achievable ERLE up to approximately 20 dB, beyond which other

effects dominate.Experimental measurements in [13] show that even at ratios of (S+N)/N of greater that

40 dB the ERLE did not go beyond 25 dB, and suggest system nonlinearities as the cause. The ERLE fol-

lows the TIP/TP ratio very closely up to a certain number of taps according to (2), however, in real world

experimental recordings, nonlinearities and othereffects serve to limit the achievable ERLE.

Summary. The relative severity of the above limitations is illustrated in Figure 4. Vibration and nonlin-

earity are frequency and volume dependent. Given that vibration effects can be minimized by appropriate

FIGURE 3. Converged ERLE for six commercially available HFTs at various sound pressure
levels (measured at 1 m from loudspeaker in an anechoic chamber).
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mechanical design procedures, nonlinear filters can have a positiveeffect on improving the ERLE when

real world (i.e. nonlinear) loudspeakers are used.

3.0 Two Stage Neural Filter Architecture

The proposed neural filter structure shown in Figure 5 consists of both nonlinear and linear sections The

nonlinear section consist of a two layer tapped delay line neural network (TDNN) that cancels the first part

of the LREM impulse response where most of the energy is contained. The weight update equations for

the nonlinear portion are based on the gradient backpropagation algorithm [4] with a normalized adaptive

step size. The linear section consists of an FIR filter.

3.1 Mixed Linear-Sigmoid Activation Function

A neural filter will generate a finite amount of distortion due to the nonlinear nature of the sigmoid and

will perform slightly worse than a conventional FIR adaptive filter, at low distortion values. In order to

mitigate thiseffect, a mixedlinear-sigmoid activation function is proposed. The activation function con-

sists of a linearized hyperbolic tangent function which is linear for inputs below a user definable amplitude

p, where . By setting the parameterp our simulations have shown that it is possible to reduce the

FIGURE 4. Achievable ERLE as a function of physical limitations.
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modelling error by a few dB in low distortion environments compared to a conventional (i.e.p=0) sigmoid.

The node activation functionϕ(s,p) is defined by;

( 3)

wheres is the input. Differentiating (3)with respect tos, we obtain the slope of the activation function:

( 4)

Figure 6 shows the activation function of equation (3) with values ofp equal to 0.0, 0.5, and 0.9, along

with the associated values.

FIGURE 5. Proposed nonlinear AEC structure consists of a nonlinear tapped delay line neural
network (TDNN) and linear FIR portions.
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For data that is weakly nonlinear, the weights in the TDNN will adjust to provide an activation in the linear

region of the sigmoid. Simulation results showing theeffect of varying the linear region versus converged

ERLE are shown in Figure 7 for a (10,5,1) TDNN filter. The primary signal is generated by passing fil-

tered noise through a fixed nonlinearity which generates quadratic and cubic distortion according to

( 5)

FIGURE 6. Activation function and derivative with respect to s for p=0.0, 0.5 and 0.9.
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The outputd(n) is then convolved with a 10 tap randomly generated impulse response to yield the primary

signalp(n). The distortion parameters are set toa=1 andb=c=0.01 (low distortion) andb=c=0.5 (high dis-

tortion). The optimum value of linear region is highly dependent on the severity of nonlinearity encoun-

tered however the activation function can be made fully adaptive (for example see [15]). For our purposes

however, the parameterp was set to 0.2 since it was found experimentally that this produced an ERLE

approximately 1.5 dB higher than with a conventional (i.e.p=0) sigmoid and was considered as a good

compromise between the two extremes.

3.2 BP Weight Update Equations

In Figure 5, the outputy(n) of the neural network portion at timen is defined by;

( 6)

( 7)

( 8)

wherex(l)(n) represents the input vector to layerl, w(l)(n) represents the weight vector in layerl, w(l)
b(n)

represents the single bias weight for layerl, s(n) represents the input to the nonlinear node andT is the

transpose operator. The weight update equations are described by;

( 9)

( 10)

( 11)
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( 12)

The parameterα is a number between 0 and 2, and is set to 0.5. The weights in the linear portion of the

proposed structure are updated using the NLMS algorithm which also has a DC bias compensation update

to compensate for real world DC offsets;

( 13)

( 14)

3.3 TDNN Order Selection

Experimental data was applied to a TDNN filter to determine the optimum length for the delay line section.

The results shown in Figure 8 illustrate that for an undermodelled system, a TDNN structure has improved

ERLE performance compared to the stand alone FIR structure trained with the NLMS algorithm. The

experimental data was obtained from HFT #6 transducer components recorded in an anechoic chamber at a

volume of 100 dBSPL measured at 0.5 m. A (n0,2,3,1) TDNN model is used wheren0 is a variable number

of input taps. The best performance occurs whenn0=150 taps. Here the difference between theTDNN and

FIR ERLE value is approximately 5.5 dB.

3.4 Measurement Setup

Measurements are performed in a low-noise, furnished conference room . A handsfree telephone (HFT #6)

which has been modified to allow access to the primary and reference electrical signals is placed on top of

the conference table. The referencesource signal consists of white noise which is bandlimited from 300 Hz

to 3400 Hz. The filtered reference signal is then amplified such that the loudspeaker produces a sound

pressure level from 60dB to 95dB as measured 0.5m directly above the loudspeaker. The primary and ref-

erence signals are then recorded onto a TEAC Digital Audio Recorder (DAT). The DAT signals are down-
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loaded to a computer via an ARIEL DSP96 board sampling at 16 kHz. These samples are then applied to

both the proposed structure and a 600 tap linear adaptive FIR filter which has DC bias compensation and

weights updated in the same fashion as equations (13) and (14). In the proposed structure, the number of

taps in the nonlinear section delay line equals 200 to cover the bulk of the loudspeaker impulse response.

The number of taps in the linear section is 400 for a total impulse length of 600 taps. For each SPL, both

algorithms are tested with the same input data of length 80,000 to allow convergence to a steady state at

which point the average ERLE is measured and plotted.

3.5 Experimental Results Using Noise

In Figure 9 (a), over 11 dB of improvement can be seen at 95 dB SPL compared to the linear algorithm,

and between 0-2 dB improvement is obtained over the rest of the volume range. At low volumes in the

vicinity of 65 dB SPL, the proposed structure improves the ERLE by 3 dB as compared to the linear adap-

tive filter even though there is little nonlinear distortion in this range. In the low volume ranges, two-point

suspension nonlinearities are present in the loudspeaker movement [14] and the proposed structure offers

some improvement. In the medium volume range from 70-75 dB SPL, the proposed structure performs as

FIGURE 8. Experimental results for HFT components in anechoic chamber. A TDNN is capable
of obtaining a better ERLE in an undermodelled state as compared with the NLMS algorithm.
Results obtained at a high volume level of 100 dB SPL measured at a distance of 0.5 meter.
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well as the linear structure. However, in the vicinity of 80 to 95 dB SPL where nonlineareffects dominate,

the proposed structure clearlyoutperforms the linear filter in terms of converged ERLE and demonstrates

over 11 dB improvement at 95dB SPL. Figure 9 (b) shows the corresponding power spectral density of the

primary and referencesignals, as well as the error signals for the linear and nonlinear algorithms. The error

signal generated by the FIR filter closely follows the primary signal out-of-band. The error signal for the

proposed structure is several dB lower across the full spectrum.
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FIGURE 9. Experimental results showing performance of the proposed structure using HFT #6
in a furnished conference room. (a) Converged ERLE, keys taped down. (b) plot of PSD of
signals.
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4.0 Fast Conjugate Gradient Backpropagation

In this section thenonlinear fast conjugate gradient(NFCG) backpropagation algorithm is presented as an

alternative to the conventional BP algorithm to speed convergence. The conventional BP algorithm is

probably the most widely used supervised learning algorithm in neural network applications. However,

with a large number of weights, the BP learning time is excessively long and its use becomes impractical.

The conjugate gradient algorithm is well suited for the neural network learning problem since it is fast,

simple and requires little additional storage space. The CG method speeds up the BP learning time signifi-

cantly and does not suffer from the inefficiencies and possible instabilities that arise using the BP with a

fixed step size. In fact, the CG algorithm has been found in some studies [7] to be an order of magnitude

faster than the conventional BP using momentum. However, the CG computational burden is still quite

high compared to BP.

Partial CG methods (see [6][16]) can simplify the CG algorithm complexity and can be considered a step-

ping point for the formulation offast (i.e. numerically less intensive) versions of the CG algorithm. Boray

and Srinath [17] recently developed afast conjugate gradient algorithm(FCG) for linear adaptive filtering

using an averaged instantaneous gradient over awindow of past sample values. They showed that the

advantages of this windowed approach are (i) better tracking and convergence is achieved in nonstationary

environments with correlated data compared to theRecursive Least Squares(RLS) algorithm, and (ii) there

are no stability problems associated with an exponential forgetting factor as in the RLS algorithm.

Here we extend the FCG algorithm to the nonlinear case, for neural networks. The differences are (1) the

network is nonlinear (2) the errors must be computed for hidden layers and not just the output layer (3) the

previous values of thehidden layeroutputs must be retained as well as the output layers in order to com-

pute the gradient. The gradient is computed using the average squared error of awindow nw of training

input/output pairs. Another important difference is that theoptimum step size, which is calculated for each

iteration in the standard CG is now replaced by a fixed step size, as proposed in [17]. This has theeffect of
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substantially reducing the computational burden. Expressions for the CG and BP algorithms have been

developed by several authors, including Charlambous [18], Johanssonet. al. [7] , as well as Adeli and

Hung [19]. However, these expressions were based on thebatchtraining mode using thefull set of input/

output pairs as well as requiring the determination of the optimum step size by direct calculation or a line

search.

The NFCG algorithm is summarized below. Errors are backpropagated topreviouslayers in the same way

as the conventional BP algorithm. The important point is that the window is moved for each new sample of

the input that comes in i.e. it is aslidingwindow nw of past input/output pairs.

Nonlinear FCG (NFCG) Algorithm

Initialization: Set weights and biases to random values.

For each iterationn, do Steps 1 2 and 3.

Step 1. a) Starting with an initial weight vectorw0, compute the following;

( 15)

whereginst(n-i) is theinstantaneousgradient calculated with the current network weight vectorw0(n)

and past inputsuo(n-i) andd(n-i). Bothginst(n-i) andw0(n) are vectors of lengthM, whereM is the total

number of weights in the network.

b) setd0 = -g0

c) compute the normalized step size parameterα according to;

( 15.1)
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Note thatα could be replaced by a fixed step size here if desired;

Step 2. Repeat fork=0,1,.nw-1 wherenw ≤ m

a) setwk+1 = wk + αdk

b) Compute an estimate of the gradient atwk+1;

( 16)

c) Unlessk=nw-1, set dk+1= - gk+1 + βkdk,where;

( 16.1)

Note that ifβk > 1, go directly to Step three.

RepeatStep 2 a).

Step 3. Replacew0 by wk and go back toStep 1.

The calculation of individual elements of the instantaneous gradient vector is done by per-

forming the following steps;

( 17)
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( 18)
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( 19)

Note that represent the nonlinear output of the neural network at timen using

the current weight vector with past input vectors .

Complexity. The choice ofnw =1 implies no averaging in the gradient estimate and the NFCG algorithm

reverts to the BP algorithm. For higher values ofnw the complexity approaches that of algorithms that use

the second derivative for obtaining the optimum step size and direction which have complexityO(m3)[20]

wherem is the total number of weights in the network. The complexity of the NFCG algorithm isO(mnw
2)

since inStep 2, the weights are updatednw times per iteration and the calculation of the averaged gradient

is O(mnw).

4.1 Computer Simulation

In this section, we apply the NFCG algorithm to the identification of a nonlinear system constructed by

generating a signal which is hard limited and convolved with an exponentially decaying 50 tap impulse.

e n i–( ) d n i–( ) N wk 1+ n( ) u0 n i–( ),[ ]–=

N wk 1+ n( ) u0 n i–( ),[ ]

wk 1+ n( ) u0 n i–( )



18 Revision: July 10, 2003

The system is illustrated in Figure 10. The input signalx(n) is obtained by a first order autoregressive (AR)

process according to

( 20)

wherev(n) is a unit variance white noise sequence. The hard limiter has a linear region up to 0.5, beyond

which the output is clipped with a slope of 0.2. Two hundred independent trials are used in the averaging of

the Normalized Mean Square Error (NMSE).

The results illustrated in Figure 11 show that for the AR input, the NFCG algorithm converges at a rate

much faster than the conventional BP algorithm, depending on the size of the gradient averaging window

nw. The larger the choice ofnw, the higher the convergence rate. The final misadjustment is approximately

-18 dB for all cases.
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Convergence Rate Improvement.The convergence rate improvement is not a linear function of the

window size. For example, the BP algorithm, which is equivalent to the NFCG withnw=1, takes approxi-

mately 1400 iterations to reach -15 dB NMSE. For window sizesnw=2, 5, and 10, the number of iterations

required to reach the same NMSE are approximately 600,200 and 150 respectively. As a result, it can be

seen that the convergence rate improvement becomes progressively smaller for large window sizes, and

that fornw>5, the convergence rate improvements are small.

4.2 Experimental Results Using Noise and Speech Signals

In this section two computer experiments are performed using data collected from actual LREM and HFT

components. The data collection method is similar to that presented in Section 3.4. In experiment #1, a fil-

tered noise signal is applied to an HFT loudspeaker which is mounted in a standard loudspeaker baffle and

placed inside an anechoic chamber. This is the reference signal. The primary signal is picked up by a

microphone placed 10 cm. in front of the loudspeaker. The primary and referencesignals are then applied

to a conventional TDNN structure which is trained with the BP and NFCG algorithms.

FIGURE 11. Simulation results showing the averaged NMSE performance of the BP and NFCG
algorithms with nw=2, 5, and 10 for the system identification model of Figure 10. Two hundred
independent trials are used in the averaging process
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In experiment #2, data is collected inside a furnished conference room using HFT#6. Speech signals were

applied as the reference signal. The primary and referencesignals are applied to the parallel cascade

TDNN-FIR structure and the nonlinear section is trained with the BP and NFCG algorithms. For compari-

son purposes, the performance of an FIR filter trainedwith the acceleratedstabilized fast transversal filter

(SFTF) algorithm is also shown. The accelerated SFTF algorithm [21][22] is used to remove the long train-

ing time associated with LMS based training algorithms when using speechinputs, which may be as long

as 10 seconds.

Experiment #1, Noise Input.The volume is 100 dB SPL as measured at 0.5 meters from the loud-

speaker. The microphone is placed 15 cm. from the loudspeaker output. The signals are sampled at 16 kHz

and are later transferred to a computer for off-line analysis. Two adaptive filter structures were tested to

identify the system (i) a 150 tap linear transversal filter trained using the NLMS algorithm (ii) a 3 layer

TDNN with 150 input taps trained with both the BP and NFCG algorithms. The experimental results

shown in Figure 12 show the results for all cases. The NLMS has fast convergence but is incapable of

obtaining an ERLE of greater than 19 dB due to the nonlinear loudspeaker. The TDNN trained with the BP

algorithm is capable of identifying the system more effectively and achieves 25 dB ERLE but the initial

convergence is much slower than the NLMS algorithm. Training the TDNN using the NFCG with a win-

dow sizenw=5 results in convergence speed equivalent to the NLMS structure as well as obtaining 24 dB

ERLE.

Experiment #2, Speech Input.The average volume of the speech signal as measured 0.5 m from the

loudspeaker is 95 dB SPL, which is a comfortable listening level 6-10 ft. from the HFT. The HFT is placed

in the middle of the conference table. The parameters are listed in Table 1 .
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Figure 13 shows the speech signal amplitude as a function of time. The converged ERLE results shown

below in Figure 14 and Figure 15 indicate that the proposed structure/algorithm outperforms the FIR struc-

ture trained with the accelerated SFTF algorithm by approximately 5 dB.

4.3 Discussion

The results presented in this section have shown that the NFCG algorithm is capable of improving the con-

vergence rate of neural network based adaptive filters. When applied to the TDNN-FIR structure, the

NFCG algorithm achieves a 5 dB improvement in ERLE compared to the accelerated SFTF algorithm

when trained withreal speech signals atloud volumes where loudspeaker nonlinearities become signifi-

TABLE 1. Experiment #2 parameters.

Item Parameters

Data 160,000 samples @16 kHz sampling. 95 dB SPL aver-
age volume at 0.5 m.

FIR Trained with Accelerated SFTF N=600,λ=0.9998, acceleration factor=0.95, soft initial-
ization constant=200.

TDNN-FIR trained with NFCG algorithm N1=150,N2=450, number of hidden nodes=1, neural
network normalized step sizeα=0.5, nlms step size
α=0.5,window sizenw=5 for TDNN section

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

−5

0

5

10

15

20

25

30

Iterations

E
R

LE
 [d

B
]

ERLE Convergence at 100 dB SPL

FIR Trained by NLMS       
TDNN Trained by BP        
TDNN Trained by NFCG, nw=5

FIGURE 12. Experimental results comparing converged ERLE curves of a 150 tap FIR structure
trained using the NLMS algorithm with that of a TDNN trained with the BP and NFCG
algorithm.
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cant. Simulation results in Section 4.1 also indicate that by varying the size of the gradient windownw, we

can obtain improved convergence speed with a corresponding increase in complexity. Awindow size of

nw=5 was found sufficient to speed the initial convergence rate of the TDNN-FIR structure to be no worse

than the linear FIR trained with the NLMS algorithm, when applied to data collected from a loudspeaker/

microphone placed in an anechoic chamber.

One of the important features of the NFCG algorithm is that the gradient windownw can be made arbi-

trarily small to “tailor” the algorithm to a particular application. Thus, where a modest increase in conver-

FIGURE 13. Reference signal speech signal.
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FIGURE 14. Experimental results. Converged ERLE results with speech input. Gaps show
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0 1 2 3 4 5 6 7 8 9 10
−10

−5

0

5

10

15

20

25

30

Time [seconds]

C
on

ve
rg

ed
 E

R
LE

 [d
B

]

Speech signal, Conference Room #2, HFT #6

SFTF      
NFCG, nw=5



23 Revision: July 10, 2003

gence is desired without compromising tracking ability, a smallnw can be chosen. Low values ofnw will

result in slower convergence, however, the advantages are reduced complexity and faster tracking capabil-

ity.

5.0 CONCLUSIONS

A novel two stage neural filter for application in compensating system nonlinearities in handsfree acoustic

echo cancellers was presented in this paper. A fast nonlinear training method based on the conjugate gradi-

ent algorithm has also been presented. Simulation results have shown that the training algorithm can pro-

vide a speed/complexity trade-off. Experimental results obtained from real world data have shown that the

proposed structure is capable of achieving 11 dB of improvement in steady state ERLE when noise signals

are applied at high volume to an HFT in a conference room environment. When trained with the NFCG

algorithm, the proposed structure is capable of approximately 5 dB improvement in ERLE compared to a

linear FIR trained with the accelerated SFTF algorithm.

FIGURE 15. Experimental results. Close up of speech period between 6 and 8 seconds. TDNN-
FIR nonlinear structure trained with proposed algorithm achieves a higher ERLE that the FIR
filter trained with stabilized SFTF algorithm.
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