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ABSTRACT

This paper focuses on multilayer perceptron neural networks
where the activation functions are adaptive and where each neu-
ron synapse is modelled by a finite impulse response (FIR) filter.
A simplified architecture consisting of a variable activation (VA)
function which is sandwiched between two FIR synapses is stud-
ied. The VA function consists of a mixed linear-tanh sigmoid with
a parameter which controls the linear region.The VA parameters
and FIR synaptic weights are updated using a modified form of
the instantaneous-cost (IC) temporal backpropagation algorithm
[1]. Simulations for identifying cascaded nonlinear transfer func-
tions with internal memory and arbitrary activation functions
illustrate the improved modelling performance over models with
non-adaptive activation functions.

1. INTRODUCTION

Multilayer perceptrons (MLPs) with synapses described by filters
have been recently proposed as alternative architectures for mod-
elling nonlinear time-dependent signals [2].The approach is to
replace the traditional synaptic weights with finite impulse
response (FIR) or infinite impulse response (IIR) filters [3] to
capture the underlying dynamics of time-dependent input infor-
mation. However, these techniques are based on the use of a fixed
activation function and may not be optimum architectures for the
identification of networks that contain arbitrary activation func-
tions.

In this paper we propose an adaptive FIR MLP where an arbitrary
nonlinearity is sandwiched between the FIR synapses as shown
in Figure 1 . This architecture is similar to the linear-nonlinear-
linear cascaded Volterra system described in [4], however, in this
case the fixed nonlinear Volterra kernels are replaced by an adap-
tive activation function with a variable linear region. This archi-
tecture offers an additional degree of freedom, however,
derivation of the update parameter for the activation function is
more complicated than in a conventional MLP since the error sig-
nal must be propagated backwards through the FIR sections.

Teshnehlab and Watanabe [5] recently proposed a flexible sig-
moid function for application in a conventional MLP but their
network did not have temporal FIR synapses as described here.

The idea of using an adaptive activation function was also pro-
posed in [6], however, the activation function was placed at the
output only, and was trained with all other weights being held
constant. In this paper, we introduce an architecture where both
the FIR synapse weights and the activation function can be
placed arbitrarily and adapted on-line.

An algorithm for training FIR synapses was first published by
Wan [2] and later extended by Back and Tsoi [1] into four dis-
tinct variants based on using either an instantaneous cost or total
cost function. Since we are primarily concerned with on-line
training applications, the algorithm presented below is based on
the instantaneous cost function, with an accumulated gradient
vector of lengthnw. If nw=1, the algorithm is similar to the
instantaneous cost instantaneous gradient (IC1) algorithm
described in [1] whereas ifnw=T, whereT is the length of the
FIR synapse, it is similar to the instantaneous costaccumulated
gradient (IC2) algorithm. The choice ofnw however is not
restricted to 1 orT, and may assume any value in between.
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(a) FIR synapse model

(b) Proposed structure using adaptive activation function

FIGURE 1. Synapse model MLP. (a) A single weight is
replaced by an FIR synapse. (b) Proposed architecture
consists of a variable activation function sandwiched
between FIR synapses.
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2. DESCRIPTION OF THE LEARNING
ALGORITHM

A general FIR MLP is defined by;

( 1)

wherewij
l is the weight connecting the output of neuroni to the

input of neuronj in the l-th layer. Similarly,

( 2)

( 3)

( 4)

( 5)

where represents the vector dot product andn refers to
the discrete time index.

Define the instantaneous cost function as the squared Euclidean
distance between the network output and the desired outputd(n).

( 6)

The weights are updated using stochastic gradient method which
minimizes the cost functionE;

( 7)

Details of the derivation of the basic algorithm are given in [2]
however in this paper the weight update equations for the FIR
tap weights have been modified slightly to allow for a selectable
gradient accumulation of sizenw. The updates are given as;

( 8)

( 9)

where the quantities and define theaccumulated
weight and delta gradient components of lengthnw;

( 10)

( 11)

and represents the derivative of the activa-
tion function with respect to the inputs.

3. ADAPTIVE ACTIVATION FUNCTION

The activation function used here is defined by

( 12)

where s is the input anda defines the linear region which is
adaptive. The adaptation ofa is done according to the stochastic
gradient update;

( 13)

( 14)

Essentially, the derivative of the activation function is computed
with respect toa and then it is multiplied by the filtereddelta
vector, which is the quantity in square brackets. It should also be
noted that the value ofa is clamped between 0 and 1.

Figure 2 shows the activation function of equation (12) with
values ofa equal to 0, 0.5 and 0.9, along with the associated

and values. There is no restric-
tion on the type of nonlinearity used. For example, we may
define an alternate hyperbolic tangent function such as;

( 15)

Yamadaet al. [7] have used a similar unit function to construct a
direct neural network controller for robot manipulators, but with
a different definition from that described above and without giv-
ing the learning algorithm of the parametera.
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4. SIMULATION

In this section we apply the proposed structure to the identifica-
tion of a nonlinear system comprised of a structure as shown in
Figure 3. The plant activation function parametera was set to

0.5, and the number of taps in the 2nd FIR section is 10. Both
of the FIR sections have the weights and biases randomly
assigned.

Three structures were tested. The first structure (called ‘FIR’) is
a conventional FIR structure consisting of 15 taps with the inclu-
sion of a bias weight to compensate for output bias. It is trained
with the Normalized Least Mean Square (NLMS) algorithm
using a normalized step sizeα equal to 0.5.

The second structure tested (called ‘IC’) consists of two FIR sec-
tions with a fixed sigmoidal activation function between them,
essentially equation (12) witha=0. The number of taps is the
FIR sections is set to 5 and 10 respectively, and the gradient
accumulationnw is set to 1. This is equivalent to the instanta-
neous-cost instantaneous-gradient algorithm first published in
[1]. However, we have made one more minor modification in
that the fixed step sizesµ andξ have been replaced by a normal-
ized step size withα=0.5, in much the same way as in the NLMS
algorithm.

The third structure is the same as the IC structure except we
allow adaptation of the parametera according to the proposed
training algorithm. We call this structure ‘VA’. The activation
parametera is initialized to 0 at the beginning of training.

The training sequence consists of 8000 randomly generated data
points. For all the algorithms, the normalized mean square error
(NMSE) is plotted according to the formula;

( 16)

where and represent the averaged error and
desired signals andr represents the window values over which
these averages are then smoothed, in this case equal to 500. The
convergence results are shown in Figure 4 .

Subsequent simulations also show that as the number of weights
in the first FIR section increases, so does the training time
required to accurately model the unknown plant for the ‘IC’
algorithm, but not so for the ‘VA’ algorithm. For example, a sec-
ond simulation was performed using a plant with 50 taps in the
first FIR and 10 in the second. 48,000 training data were used in
this simulation andnw=1 for both the IC and the VA architecture.
Simulation results are shown in Figure 4.

5. DISCUSSION OF RESULTS

In Figure 4 the FIR structure trained with the NLMS algorithm is
clearly unable to identify the unknown system accurately, and
obtains an average NMSE of only -11 dB. The IC structure per-
forms considerably better, however, since it has a fixed sigmoi-
dal nonlinearity it has trouble dealing with the linear portion of
the sigmoid in the unknown system and slows down after
achieving approximately -13 dB NMSE in the first portion of
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FIGURE 2. Adaptive activation function and
derivatives. (a) With respect to the input value s. (b)
With respect to the activation parametera.
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FIGURE 3. System identification using the proposed
model.
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training. Eventually, it converges to -20 dB NMSE after 1700
iterations. The proposed structure VA withnw=1 is able to mod-
ify the activation function and achieve slightly better conver-
gence as compared with the IC structure in the 0-2000 iteration
range when using a gradient window ofnw=1. If nw is increased
to 3, the VA structure converges to -20 dB NMSE in 1000 itera-
tions, and eventually converges to -25 dB.

The results in Figure 4 illustrate the convergence performance
that is obtained by utilizing an adaptive activation function when
the number of weights in the first section is increased to 50. The
IC structure has some trouble in modelling the linear portion of
the sigmoid in the unknown plant and achieves -12 dB NMSE in
the first portion of training. Eventually it converges, but only
after 35,000 iterations. The proposed structure VA is able to

modify the activation function immediately to obtain an NMSE
of -25 dB in far fewer iterations.

6. CONCLUSIONS

This paper has presented a new architecture consisting of an FIR
synaptic neural network with adaptive activation function. The
simplified architecture studied consisted of a single adaptive
activation function sandwiched between two FIR synapses. A
temporal training algorithm is used to train the weights and
adaptive sigmoids using a gradient accumulation method. Simu-
lation results show that the gradient accumulation method offers
some improvement in initial convergence rates, however the
most striking improvements in convergence are obtained when
the order of the first FIR section is large. In this case, the stan-
dard FIR synaptic MLP has a slower convergence than the vari-
able activation architecture for the cases studied. The proposed
variable activation FIR synaptic MLP can be considered as an
interesting alternative architecture to conventional MLPs which
utilize fixed sigmoidal activation functions only. Simulation
results indicate that improved modelling performance can be
obtained over models with non-adaptive activation functions.
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FIGURE 4. Comparison of convergence curves using
the proposed architectures and algorithms.
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FIGURE 5. Convergence curves using 50 taps in the
first FIR section.
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