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ABSTRACT

In this paper a modified form of the partial conjugate gradient
algorithm is presented for use in nonlinear filtering using neural
networks. The algorithm is based on using a gradient average
window to provide a trade-off between convergence rate and
complexity which, depending on the choice of averaging window,
is (in both complexity and speed of convergence) intermediate
between the conventional backpropagation (BP) algorithm and
the Newton methods. An additional simplification is introduced
by replacing the calculated optimum step sizeαk by a normalized
step sizeα, in the same manner as the Normalized LMS algo-
rithm. This new algorithm is applied to a cascaded neural net-
work/NLMS structure for the identification of a nonlinear
system. This proposed algorithm demonstrates improved conver-
gence rates with even small choices of window size.

1.0 INTRODUCTION

The limitations of the conventional backpropagation algorithm
include the uncertainty of finding the global minimum of the
error function and excessively long training times required to
obtain a small error output. The later shortcoming, i.e. the slow
convergence to either a local or global minimum is the topic
addressed in this study. Partial conjugate direction methods [1]
can be regarded as being somewhat intermediate between the
method of steepest descent (i.e. backpropagation) and Newton’s
method, in terms of complexity and convergence properties. Thus
they give the designer the option of improving the convergence
rate at the expense of increased complexity.

2.0 DESCRIPTION OF LEARNING ALGORITHM

Consider a multilayer feedforward network, such as the three
layer network of Figure 1 . The basic mechanism behind most
supervised learning rules is to update the network weights and
bias terms until the mean-squared error between the network out-
put and desired (i.e. target) signal is minimized to below a prede-
termined level. The error signal at the output of a neuroni at time
n is defined by;

( 1)

The instantaneous cost functionEinst at timen is defined as;

( 2)

which is the instantaneous sum of squared errors of the network
for NL output nodes, in this case equal to one. We can define an
alternate cost functions to be minimized, for example, apartial
cost functionEpartial can be calculated by taking a windownw of
past cost functions calculated using the current weight vector
w(n);

( 3)

wherew(n) is a weight vector consisting all the weights in the
network, including bias weights. Specifically we may write the
supervectorw(n) as;

( 4)
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FIGURE 1. Nonlinear system identification using a three
layer feedforward neural network with an input delay line.
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wherewl(n) is the weight vector connecting layerl to layerl+1 at
time (n).

The windowed conjugate gradient algorithm usesEpartial in the
calculation of the gradient for updating the weight vector each
iteration. It should be noted that it is necessary that the previous
values of the hidden layer outputs must be retained as well as the
output layers in order to compute the windowed gradient.

The weight update formula minimizesEpartial by the delta rule
[2];

( 5)

We compute the gradient based on the average squared error of a
window of training input/output pairs, rather than the complete
set of input/output pairs (as is done in the batch training mode) or
a single input/output pair (as is done in the individual update
backpropagation mode). The errors however are backpropagated
to previous layers in the same way as the conventionalbackprop-
agation[2] BP algorithm. The important point is that the window
is moved for each new sample of the input that comes in i.e. it is
a sliding window of past input/output pairs. The proposed algo-
rithm based loosely on a linear version given in [3] is termed the
Windowed Fast Conjugate Gradient Algorithm(WFCGA) and is
summarized below;

Windowed Fast Conjugate Gradient Algorithm:

Initialization: Set weights and biases to random values.

For each iterationn, do Steps 1 2 and 3.

Step 1.a) Starting with an initial weight vectorw0, compute the
following;

( 6)

where:ginst(n-i) is the instantaneous gradient calculated with the
current network weight vectorw0(n) and past inputsxo(n-
i) and d(n-i). Both ginst(n-i) and w0(n) are vectors of
lengthM, whereM is the total number of weights in the
network.

b) setd0 = -g0

c) compute the normalized step size parameterα according to;

( 7)

Note thatα could be replaced by a fixed step size here if desired;

Step 2. Repeat fork=0,1, .nw-1 wherenw ≤ m

a) setwk+1 = wk + αdk

b) Compute an estimate of the gradient atwk+1;
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c) Unlessk=nw-1, set dk+1= - gk+1 + βkdk,where;

( 9)

Note that ifβk > 1, go directly to Step three.

RepeatStep 2 a).

Step 3. Replacew0 by wk and go back toStep 1.

The calculation of the instantaneous gradientginst(n-i) in (6) and
(8) is done by evaluating (10) through (12) as follows;

( 10)

is the network error output using weightswk+1(n) with input vec-
tor x0(n-i);

( 11)

is thelocal gradientof a particular weight where;

( 12)

Note that the vectorginst(n-i) has the same size as the supervec-
tor wk(n) and is formed by placing individual gl

ij(n-i) in much
the same way thatwk(n) is formed in (4).

Complexity: The complexity of the WFCGA isO(mnw
2) since

in Step 2, the weights are updatednw times per iteration and the
calculation of the averaged gradient isO(mnw). Thus fornw=1, it
is equal in complexity to the BP algorithm.

3.0 SIMULATION

In this section, we apply the WFCGA to the identification of a
nonlinear system constructed by generating a signalx which is
then hard limited and then convolved with an exponentially
decaying 50 tap impulse. The input signalx is obtained by a first
order autoregressive (AR) process according to the equation
x(n)=0.9x(n-1)+0.2v(n) wherev(n) is a unit variance white noise
sequence. The hard limiter has a linear region up to 0.5, beyond
which the output is clipped with a limiting function which has a
slope of 0.2. The neural network consists of a 50 tap input delay
line followed by one hidden layer. The system is illustrated in
Figure 2.
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The results illustrated in Figure 6 show that for the AR input, the

WFCGA converges at a rate much faster than the conventional
BP algorithm, depending on the size of the gradient averaging
window nw. The larger the choice ofnw, the higher the conver-
gence rate. The final misadjustment is approximately -18dB for
all cases.

4.0 APPLICATION TO NONLINEAR ACOUSTIC ECHO
CANCELLATION

The specific application addressed here is nonlinear adaptive fil-
tering and system identification, where a short term nonlinearity
is followed by a long tail impulse, for example, in nonlinear
acoustic echo cancellationwhere a where a nonlinear loud-
speaker and reverberant room must be identified. This is illus-
trated in Figure 4 and is based on the Partial Adaptive Acoustic
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FIGURE 2. System identification model. The system to be
identified is a fixed nonlinearity consisting of a linear
portion up the value of 0.5 followed by a squashing
function of slope =0.2. The output of this nonlinearity is
then passed through a dispersive channel consisting of an
exponentially decaying random noise impulse of length 50
taps.
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FIGURE 3. Comparison of the normalized MSE using
the BP and WFCGA algorithms with nw=2, 5 and 10 for
the system identification model of Figure 2. A first order
autoregressive signal is used to model the input signal x.
Two hundred independent trials are used in the
averaging process.
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Echo Canceller (AEC) structure in Reference [4]. Referring to

Figure 4, the outpute2(n) is given as;

(13)

wherep(n) is the microphone (primary) signal,y1(n) is the out-
put of the TDNN andy2(n) is the output of the delayed NLMS
filter. Expanding, we obtain;

(14)

wherew(n) are the NLMS tap weights andx(n) is the informa-
tion vector,N1 is the delay length of the TDNN section andN2 is
the total impulse length. The TDNN consists of 150 taps in the
delay line, and 2 and 3 nodes respectively in the 1st and 2nd hid-
den layers. The NLMS section has 450 taps such that the total
impulse response is 600 taps.

The NLMS algorithm [2] is the baseline by which performance
of alternative models is measured but it is incapable of reducing
nonlinear distortion. A measure of the AEC performance is the
Echo Return Loss Enhancement (ERLE) which is defined as;

( 15)

whereσ2
p andσ2

e refer to the variances of the primary and error
signals respectively andE is the statistical expectation operator.

4.1 Simulation Results

In this section, a 50 tap neural network is employed in the identi-
fication of a room impulse constructed by passing nonlinearly
distorted noise through a truncated room transfer function simi-
lar to the structure shown in Figure 2 . The application of the
windowed conjugate gradient algorithm using different window
sizes is shown in Figure 5 and is compared to the conventional
backpropagation algorithm. The figure illustrates that even mod-

FIGURE 4. Adaptive nonlinear AEC using a neural
network structure cascaded with a NLMS filter based
on the partial adaptive structure. The TDNN cancels
the first part of the AIR and an FIR trained with the
NLMS cancels the tail portion. Signal e2(n) is the
residual signal left after the echo has been cancelled.
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est sizes of gradient window can substantially improve conver-
gence speed.

4.2 Experimental Results

In this section, a loudspeaker is excited with a filtered noise sig-
nal such that a volume of 100 dB sound pressure level (as mea-
sured at 0.5m) is obtained. At this level, distortion is produced in
the loudspeaker. We apply the nonlinear algorithms in an effort to
model the nonlinearity and thus obtain improved ERLE over the
linear case. Figure 6 shows the convergence of the network of

Figure 4 compared to a purely linear filter (updated using the
NLMS). The nonlinearities present in the loudspeaker limit the
performance of the linear architecture, however, the nonlinear
architecture is capable of more accurately modelling the system,
however theinitial convergence is slower and this is due to the
slow convergence of the conventional backpropagation algo-
rithm. Now by combining the neural architecture with the

FIGURE 5. Comparison of the BP and WFCGA with
nw=1,2, and 5. Substantial improvement in convergence
is obtained with even modest window sizes.
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FIGURE 6. Experimental Results. ERLE convergence
curves for the partial adaptive TDNN (PA-TDNN)
structure and the linear structure at high volume. The
nonlinear architecture using BP is capable of achieving
improved ERLE performance but has a slower
convergence rate.
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WFCGA, both high steady state ERLE and good convergence
can be obtained, as shown in Figure 7 .

5.0 SUMMARY

This paper introduces a variant of the partial adaptive gradient
algorithm based on using a gradient averaging window and nor-
malized step size to replace the optimum step size. The WFCGA
has reduced complexity compared to the full conjugate gradient
algorithm and simulations show it has much faster convergence
even for low values of gradient averaging window when com-
pared to the conventional BP algorithm. Experimental results
using a combined neural network/NLMS structure to identify a
loudspeaker/room at high volumes show that the new architec-
ture is capable of improved system identification compared to a
linear structure but has slower convergence due to the use of the
BP algorithm. The combination of the above architecture with
the WFCGA provides both a fast convergence rate and improved
system identification in nonlinear environments.
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FIGURE 7. Experimental results using the WFCGA. The
nonlinear architecture using BP is capable of achieving
improved ERLE performance with an improved
convergence rate.


