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Abstract: System identification of a nonlinear loudspeaker/microphone
acoustic system is necessary to achieve high acoustic echo cancellation in the
handsfree telephony environments where the loudspeaker often operates at
high volumes. In this paper, a partial adaptive process consisting of a small
order tapped delay line neural network (TDNN) followed by a delayed Nor-
malized Least Mean Squares (NLMS) adaptive filter is used to model a loud-
speaker/microphone acoustic system. The TDNN models the first part of the
acoustic impulse response (AIR) where most of the energy is contained and the
delayed NLMS filter models the remaining echo. Experimental measurements
confirm that a short length TDNN is capable of improved identification in an
undermodelled system and that by extending this to the partial adaptive
TDNN structure, the ERLE performance improves by 5.5 dB at high loud-
speaker volumes when compared to a NLMS structure.

INTRODUCTION

In this paper, a partial adaptive process consisting of a tapped delay line feedfor-
ward neural network (TDNN) and normalized least mean squares (NLMS) struc-
ture are employed in an attempt to model loudspeaker nonlinearities at high
volumes. The specific application here is improved steady state performance for
acoustic echo cancellers in the handsfree environment using conference type speak-
erphones. Most of these consumer products employ inexpensive audio components
which are susceptible to nonlinear distortion at low frequencies and high volumes.
In this paper, the identification of the nonlinear loudspeaker/microphone system is
considered. In a real environment however, the AEC structure must be capable of
identifying and tracking not only the reflected signals from the room, i.e. its acous-
tic impulse response (AIR), but also of modelling the plastic enclosure vibrations
and nonlinear loudspeaker response, as shown in Figure 1.
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Conventional AECs utilize a linear adaptive transversal filter to model the AIR and
cancel the echo signal. At low volumes where nonlinearities are absent, this is a
classical system identification problem whereby the adaptive filter adjusts its coef-
ficients via the NLMS algorithm [4] to model the echo path,H(z)between the loud-
speaker and the microphone so the system output,e(n) is minimized. The NLMS
algorithm is the baseline by which performance of alternative models is measured
but it is incapable of reducing nonlinear distortion. A measure of the AEC perfor-
mance is the Echo Return Loss Enhancement (ERLE) which is defined as [5];

(1)

whereσ2
p and σ2

e refer to the variances of the primary and error signals respec-
tively andE is the statistical expectation operator.

Limitations of AEC Performance

1) TIP/TP Ratio: One of the limitations of AECs is undermodelling of the AIR. As
shown in [5] the achievable ERLE is determined in part by the degree of undermod-
elling of the unknown system. The results show that the achievable ERLE is deter-
mined by the Total Impulse Power to Tail Power (TIP/TP) ratio, defined as;

(2)

whereh is an impulse of lengthM andN is the discrete point at which the “tail” is
considered to start. The TIP/TP ratio is invaluable for determining the optimum
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FIGURE 1. Acoustic Echo Canceller Structure. The AEC must identify not only the
AIR but nonlinear and vibration effects as well.
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number of AEC filter taps to use given a certain loudspeaker, microphone and
enclosure. A TDNN can be used in place of a NLMS filter to identify a loudspeaker
[7] and to see the effect on the TIP/TP ratio when operating at high loudspeaker
volumes. The experimental results shown in Figure 6 indicate that the TDNN is
capable of achieving a higher ERLE than the NLMS when in an undermodelled
state, i.e. when the number of delays in the delay line is less than the AIR. This
improvement in performance can be used in the partial adaptive structure
(described below) to obtain improved performance at high volumes.

2) Nonlinear Distortion: The nonlinear parameters of a loudspeaker may be
described by the force deflection characteristics of the loudspeaker cone suspension
system and nonlinear flux density as described in references [1][2]and [3]. Suspen-
sion system nonlinearity manifests itself as soft clipping at the loudspeaker output
and results in odd-order harmonics under large signal conditions. The nonlinear dis-
tortion consists mainly of cubic terms and can easily be 5 to 10 percent of the total
output, especially when dealing with small loudspeakers that have low power rat-
ings. Simulations and experimental results indicate that neural network models can
identify this nonlinear distortion more effectively than linear adaptive structures.

3) Enclosure Vibration: Vibration is a serious problem that occurs under the same
conditions as nonlinear distortion, namely at low frequencies and high volumes. It
is important that this be addressed in a practice but is considered beyond the scope
of this paper and will not be discussed further.

Figure 2 shows the general ERLE performance in a typical echo environment [5].
In a simulated experiment, the ERLE will follow the TIP/TP ratio very closely,
however, in actual measurements, limitations such as room noise, vibration and
loudspeaker nonlinearities will limit the achievable ERLE as indicated.

FIGURE 2. Achievable ERLE as a function of Physical Limitations. In the absence
of vibration, nonlinear distortion and room noise, the achievable ERLE is
determined by the TIP/TP ratio.
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NEURAL NETWORK MODELS

Tapped Delay Line Neural Network

A tapped delay line neural network previously presented in [6] is shown below in
Figure 3. It can be used to perform a nonlinear system identification of the loud-
speaker/microphone system. It consists of a tapped delay line input layer, two hid-
den layers which have a piecewise linear/sigmoidal activation function and a linear
output node. The piecewise linear/sigmoidal activation function is linear below +/-
0.2 and then follows a squashed hyperbolic tangent sigmoid beyond this point such
that the output is squashed between +/- 1.0. As shown in [6], this improves system
identification at low volumes where the loudspeaker is essentially linear but also
allows for the soft clipping effect observed at higher loudspeaker volumes. It
should be noted that for activation levels less than the +/- 0.2 linear region, the gra-
dient calculations are trivial and the filter complexity approaches that of the NLMS
filter.

Partial Adaptive Model

The partial adaptive process utilizing a neural network preprocessor is shown in
Figure 4. It consists of a low order TDNN to model the large part of the AIR and a
NLMS filter to model the tail of the echo. A fixed delay line equivalent to the delay
line length of the TDNN is inserted before the NLMS filter. A similar algorithm
incorporating a multi-microphone linear NLMS structure is presented in [8]. In this
paper however, the structure has been modified to incorporate a neural network as a
nonlinear preprocessor.
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FIGURE 3. Tapped Delay Line Neural Network Adaptive Echo Canceller Structure
(TDNN).



Referring to Figure 4, the outpute2(n) is given as;

(3)

wherep(n) is the microphone (primary) signal,y1(n) is the output of the TDNN and
y2(n) is the output of the delayed NLMS filter. Expanding, we obtain;

(4)

wherew(n) are the NLMS tap weights andx(n) is the information vector,N1 is the
delay length of the TDNN section andN2 is the total impulse length.

In the proposed structures there is no feedback hence the backpropagation algo-
rithm [9] is employed to train the networks. A normalized step size [4] is employed
during the training and tracking phase for both the NLMS and neural network sec-
tions. The stepsizesµNLMS and µTDNN are individually calculated and updated
after each new sample is shifted into the tapped delay line.

The TDNN consists of 150 taps in the delay line, and 2 and 3 nodes respectively in
the 1st and 2nd hidden layers. The NLMS section has 450 taps such that the total
impulse response is 600 taps.
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FIGURE 4. Partial adaptive structure utilizing a TDNN to cancel the first part of
the AIR and a NLMS to cancel the tail portion. Signal e2(n) is the residual signal
left after the echo has been cancelled.
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COMPUTER SIMULATIONS

Simulations were performed using a computer generated white noise source as the
reference signal, which was then filtered and convolved with an artificial room
impulse function. The reference and primary files were then applied to the corre-
sponding algorithms. For each run, the reference signal is distorted by adding both
quadratic and cubic distortion according to the following equation;

( 5)

wherea, b, andc refer to the amplitude of the linear, quadratic and cubic factors,x
is the input signal andy is the output signal level. The coefficientsb and c were
increased such that the distortion level increases relative to the primary signal level.
The signal to distortion ratio is calculated by dividing the variance of the undis-
torted signal portion by the variance of the distorted signal portion. For each run,
the algorithm was allowed to converge for 80000 samples and then a mean con-
verged ERLE was obtained. The results shown below in Figure 5 indicate that the
partial adaptive network outperforms the NLMS in high distortion environments,
i.e. at low Primary/Distortion ratios.

EXPERIMENTAL RESULTS

Experimental Setup

In order to remove the effects of vibration and room noise, the loudspeaker and
microphone from a commercially available speakerphone were removed and placed
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FIGURE 5. Simulation results show that the partial adaptive TDNN outperforms
the NLMS in high distortion environments.
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in a standard baffle inside an anechoic chamber. Filtered “reference” signals are
applied to the loudspeaker and the microphone picks up the reflected or “primary”
signal. Both the reference and primary data signals are recorded on a Digital Audio
Tape and later sampled at 16 kHz and stored to disk for off-line processing. The
loudspeaker volume is varied from levels of 75 dB Sound Pressure Level (SPL) to
100 dB SPL, measured at a distance of 0.5 meter. Both the partial adaptive TDNN
structure and the NLMS algorithm are applied to the measured data and a number
of ERLE curves are obtained for various SPL levels.The algorithm is allowed to
converge for 32000 samples and then the average ERLE is obtained from the last
8000 output values.

TIP/TP Performance for the TDNN

The recorded data was applied to the TDNN structure to determine the optimum
length for the TDNN section for the highest volume (100 dB SPL) case. The results
shown in Figure 6 illustrate that for a system with undermodelling of the impulse
length, the TDNN has improved ERLE performance compared to the stand alone
NLMS. The best performance comes at approximately 150 taps where the differ-
ence between the TDNN and NLMS ERLE value is approximately 5.5 dB.
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FIGURE 6. Experimental Results. A TDNN is capable of obtaining a better
ERLE in an undermodelled state as compared with the NLMS algorithm.
Results obtained at a high volume level of 100 dB SPL measured at a distance of
0.5 meter.



Partial Adaptive Structure Performance with Increasing SPL

As shown in Figure 7, the converged ERLE for the partial adaptive structure
decreases from a high of 32dB at 80dB SPL to 18.5dB at 100 dB SPL when using
the NLMS algorithm. This agrees with results presented in [4] and [8] which show
that ERLE is low for low speaker volumes (where acoustic, thermal and DSP
related noise are significant) but increases as the reference signal increases, eventu-
ally reaching a plateau. Any increase in reference signal level to the loudspeaker
after this point results in adecreasein the ERLE due to nonlinear distortion. Also
shown for comparison is the partial adaptive TDNN algorithm which outperforms
the NLMS algorithm at high volume levels. The TDNN section consisted of 150
taps as determined from Figure 6.

.

The length of the total impulse response is the same for both the partial adaptive
TDNN structure and the baseline NLMS structure and is truncated to 600 taps.
Note the improvement in ERLE over the NLMS case is significant in the high SPL
volume ranges and is greater than 5.5 dB at volume levels in the vicinity of 100 dB
SPL.

Convergence

Figure 8 illustrates the ERLE convergence of the partial adaptive TDNN structure
compared with the NLMS structure, obtained using data recorded at 100 dB SPL.
The convergence rate of the new structure is slightly worse than the NLMS and will
affect the tracking performance of the AEC. Methods to reduce this are currently
under investigation.
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FIGURE 7. Experimental Results. Converged ERLE performance of the partial
adaptive TDNN structure compared to the NLMS structure. A 5.5 dB improvement
in ERLE can be obtained at high volumes.
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CONCLUDING REMARKS

A TDNN structure has been shown to improve the achievable ERLE of a loud-
speaker/microphone system at high volumes. This suggests the use of a partial
adaptive structure incorporating a short delay TDNN to replace a section of the
NLMS filter. The partial adaptive TDNN structure was found to improve the ERLE
performance over the NLMS baseline AEC by 5.5dB at high volumes where loud-
speaker nonlinearities limit the achievable ERLE. All measurements were per-
formed using real audio components. Although the new structure clearly offers
improvements at high volume (i.e. high distortion) levels, it does not quite match
the performance of the NLMS structure a low distortion levels. It also has a slightly
slower convergence rate, although acceleration techniques were not employed. This
is the subject of future research.
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