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Complex Mathematical Representation of I/Q imbalances 
Neil Birkett         Jan 13, 2005 

Introduction 
I/Q imbalance can be represented as a leakage from the Q to I path �[1].  One 
representation is to put the entire phase imbalance into the sine path.  
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Figure 1  Phasor representation of I/Q imbalance. 

 
In �[1] this is represented as follows; 
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where α and β are measures of the gain imbalance and φ is the phase imbalance. 
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Figure 2.  Conventional implementation of IQ imbalance. 
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Figure 3  Alternate implementation of previous figure has 6 adjustments to be made. 

 
An alternate representation of the distortion and can be stated as; 

deqjiy j +•+= ϕβα    Equation 2 

 
Where 

• y is the complex distorted signal,  
• ϕ is the rotation applied to the q component only, and represents the phase 

difference from ideal (i.e. when i and q are 90 degrees out of phase with each 
other), 

• α and β are independent gains applied to the I and Q paths. 
• i is the in-phase component of the ideal signal T 
• q is the quadrature component of the ideal signal T 
• j is the imaginary operator 
• d is a complex dc offset.  

 
Ignoring DC offset, we can define a normalized version as 
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where ϕγ je∆= is a complex number and we have defined 
α
β

=∆ as a measure of the 

amplitude imbalance. 
 

New Representation 
It is possible to construct an alternate structure using complex taps to generate y.  
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Figure 4. Alternate (Complex) implementation of I/Q imbalance. 

 

The math behind the new representation 
 
As per Figure 4, and ignoring the dc offset, let us define the output y as; 

∗+= xdxdy 21    Equation 4 

where 
• d1 and d2 represent the complex distortion multipliers 
• * is the conjugate operator 
• x is the complex input. 

 
Similar to Equation 3, we can replace x with i + jq and normalize the expression as 
follows; 
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We can equate Equation 3 and Equation 6 to obtain the equality below; 
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Lets examine the left side of equation 7 and rewrite it. 
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where z=d2/d1 
 
If we now let z equal some arbitrary complex number a + jb, we can substitute into 
equation 8 and simplify to get; 
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  Equation 9 

 
We can rewrite equation 7 using Euler’s formula and equating to Equation 9 to get, 
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Hence, from equation 10 we can generate two equations (real and imaginary) with two 
unknowns; 
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It is now possible to solve for a and b for values of ∆ and φ using equation 11. 
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