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ABSTRACT

One of the limitations of linear adaptive echo cancellers
is nonlinearities which are generated mainly in the
loudspeaker. The complete acoustic channel can be
modelled as a nonlinear system convolved with a linear
dispersive echo channel. Two new acoustic echo can-
celler models are developed to improve nonlinear per-
formance. The first model consists of a time-delay
feedforward neural network (TDNN) and the second
model consists of a memoryless neural network fol-
lowed by an adaptive Normalized Least Mean Square
(NLMS) structure. Simuations demonstrate that both
neural network based structures improve the Echo
Return Loss Enhancement (ERLE) performance com-
pared to a linear NLMS acoustic echo canceller.
Experimental results using the TDNN improved the
ERLE by 10 dB at low to medium loudspeaker vol-
umes.

1.0 INTRODUCTION

Limitations of echo cancellers [5][7] include (a) acoustic,
thermal and DSP related noise, (b) under-modelling of the
room impulse response (c) slow convergence and dynamic
tracking, (d) nonlinearities in the transfer function caused
mainly due to the loudspeaker, and (e) resonances and
vibration in the plastic enclosure.

In this paper, a tapped delay line feedforward neural net-
work and a cascaded neural network/NLMS structure are
employed in an attempt to model the system nonlinearities
and acoustic path in a hands-free environment. Since there
is no feedback in the network, the backpropagation algo-
rithm [6] is used to train the networks.

A typical handsfree terminal is illustrated in Figure 1 and
normally consists of two Adaptive Filters (AF). The first
AF is used to remove acoustic echos and the second AF is
used for cancelling echoes from an imperfect hybrid as
well as reflections from the line. In this paper, only the
acoustic echo canceller (AEC) is considered.

1.1 Distortions in the Loudspeaker

A loudspeaker has several sources of nonlinearity including
non-uniform magnetic field and nonlinear suspension sys-
tem [1][3]. A loudspeaker consists of an electrical part and
a mechanical part. The electrical part is the voice coil and
the mechanical part consists of the cone, the suspension
system and the air load. The two parts interact through the
magnetic field resulting in a nonlinear force deflection
characteristic fM of the loudspeaker cone suspension sys-
tem, usually approximated [3] by;

( 1)

whereα, β andδ are modelling constants and x is the dis-
placement of the voice coil. Suspension system nonlinearity
manifests itself as soft clipping at the loudspeaker output
and results in odd-order harmonics under large signal con-
ditions. The nonlinear distortion consists mainly of cubic
terms and can easily be 5 to 10 percent of the total output,
especially when dealing with small loudspeakers that have
low power ratings.

FIGURE 1. Adaptive Acoustic Echo Canceller Structure.
The hybrid echo canceller is also shown for reference.
Variables p(n) and e(n) are the primary and error signals.
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2.0 CONVENTIONAL ADAPTIVE ECHO
CANCELLER MODELS

Conventional AECs utilize a linear adaptive transversal
filter to model the room impulse response and cancel the
echo signal. The NLMS algorithm [9] is the baseline by
which performance of alternative models is measured but
it is incapable of reducing nonlinear distortion. A measure
of the AEC performance is the Echo Return Loss Enhance-
ment (ERLE) which is defined as;

( 2)

whereσ2
p andσ2

e refer to the variances of the primary and
error signals respectively andE is the statistical expecation
operator.

Adaptive volterra filtering can be utilized to deal with
loudspeaker nonlinearities [3][8], however, filter orders
greater than 3 are required to effectively model the speaker
transfer function and this very quickly leads to an unman-
ageably huge model [8]. Neural networks offer an alterna-
tive method of dealing with high order system
nonlinearities.

3.0 NEURAL NETWORK ECHO CANCELLER
MODELS

Two adaptive AEC networks were constructed. The first
model utilizes a fully adaptive 3 layer feedforward Time
Delay Neural Network as shown in Figure 2. The inputs
are obtained from a tapped delay line. This model is
referred to as the TDNN model.

.

FIGURE 2. Tapped Delay Line Neural Network Adaptive
Echo Canceller Structure (TDNN).
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FIGURE 3. Cascaded neural network/NLMS acoustic
echo canceller structure (CASC).

The second model shown in Figure 3 consists of a cas-
caded neural network and linear transversal filter. The
transversal filter part in this model is trained by the NLMS
algorithm. This model requires an intermediate training
signal which represents a microphone placed directly in
front of, and in close proximity to the loudspeaker. This
model is referred to as the CASC model

In both neural network models a piecewise linear-sigmoid
activation function is used in order to mimic the soft clip-
ping effect and is shown in Figure 4 along with its corre-
sponding delta function.

.

FIGURE 4. .Piecewise linear-sigmoid activation function
and corresponding delta. The linear section with a value
of ± 0.2 gave the best results in this study.

The transfer function is linear below a user definable point
and then follows a compressed hyperbolic tangent sigmoid
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beyond this point such that the output is squashed between
± 1.0. The linear region was set to ± 0.2 in the TDNN
model since it was found that this gave good results. For
the CASC simulation, it was left at zero.

In both the proposed structures there is no feedback hence
the backpropagation algorithm [6] is employed to train the
networks. A normalized step size [9] is employed during
the training and tracking phase. The stepsizeµ is updated
after each new sample is shifted into the tapped delay line.
In addition, momentum is used during training such that
each tap update consists of a fraction of the previous tap
weight.

4.0 COMPUTER SIMULATIONS

Simulations were performed using a computer generated
white noise source as the reference which was then filtered
and convolved with an artificial room impulse function
similar to the configuration of Figure 3. The reference and
primary files were then applied to the corresponding algo-
rithms. For each run, the reference signal is distorted by
adding both quadratic and cubic distortion according to
(3).

( 3)

where a, b, and c refer to the amplitude of the linear, qua-
dratic and cubic factors, x is the input signal and y is the
output signal level. The coefficients b and c were increased
such that the distortion level increases relative to the pri-
mary signal level. The signal to distortion ratio is calcu-
lated by dividing the variance of the undistorted signal
portion by the variance of the distorted signal portion. For
each run, the algorithm was allowed to converge and then
a mean converged ERLE was obtained.

4.1 Simulation Results

The converged ERLE levels of the NLMS algorithm,
TDNN and cascaded network CASC are shown in Figure
5. The NLMS performs well when the signal to distortion
ratio is large (i.e. little distortion). At these signal levels,
there is a small amount of distortion added by the nonlin-
ear nodes of the neural network resulting in worse perfor-
mance than a purely linear algorithm. However, at higher
distortion levels, the TDNN and CASC structures have
better performance. The CASC structure performs better
than the TDNN structure since it more closely resembles
the acoustic channel model.
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FIGURE 5. Comparison of the NLMS, TDNN and CASC
algorithms for various quadratic and cubic distortion
levels.

5.0 EXPERIMENTAL TEST RESULTS

A commercially available speakerphone was purchased and
modified to allow access to internal signals. The modified
speakerphone is placed inside an anechoic chamber. Fil-
tered “reference” signals are applied to the loudspeaker and
the microphone picks up the reflected or “primary” signal.
Both the reference and primary data signals are recorded on
a Digital Audio Tape and later sampled at 16 kHz and
stored to disk for off-line processing.

The NLMS algorithm with 600 taps is applied to the mea-
sured data and a number of ERLE curves are obtained for
various speaker volume levels. The algorithm is allowed to
converge for 32000 samples and then the average ERLE is
obtained from the last 8000 output values. The results illus-
trated in Figure 6, show that the converged ERLE is low for
low speaker volumes where acoustic, thermal and DSP
related noise are significant. This agrees with results pre-
sented in [5] and [7]]. The ERLE increases as the reference
signal increases but reaches a plateau. Any increase in ref-
erence signal level to the loudspeaker after this point results
in a decrease in the ERLE

Also shown in Figure 6 is the performance of a fully adap-
tive (600,2,2,1) TDNN structure. The improvement in
ERLE over the NLMS case is significant in the low to
medium volume ranges and is greater than 10 dB at power
levels in the vicinity of 1mW.
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FIGURE 6. Experimental Results. Converged ERLE plot
vs. loudspeaker volume using a three layer fully adaptive
TDNN. The three layer network (solid line) shows over
10 dB improvement in ERLE at low to medium volumes.
The NLMS algorithm (dashed line) is shown for
comparison.

6.0 DISCUSSION OF RESULTS

The cascaded neural network structure shows promising
potential and achieves a higher ERLE than the TDNN in
the computer simulations. This is due to the fact that the
cascade structure more closely resembles the acoustic
channel. Both the proposed neural based structures
improve the ERLE at high distortion levels at the expense
of increased computational burden. For low distortion lev-
els, the NLMS algorithm is the preferred structure. The
results of Figure 6 show that the TDNN does not offer sig-
nificant ERLE improvement at high speaker volumes sug-
gesting that there still exists a deficiency in the modelling
of the room/speakerphone transfer function at these vol-
ume levels. The filtering of the primary and reference sig-
nals also limits the distortion products such that the
channel appears “linearized”. This will limit the amount
of distortion the adaptive structure can model, and ulti-
mately cancel. This is being considered for future study.

7.0 SUMMARY

Nonlinear distortions and undermodelling have been found
to limit the converged ERLE of acoustic echo cancellers in
handsfree terminals. Loudspeaker distortions include non-
linearity in the suspension system which will result in soft
clipping at high volumes. A piecewise linear/tanh-sigmoid
activation function has been developed to more accurately
model the soft clipping effect. Two different NLMS-neural
network based models have been developed. Results
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obtained from simulation indicate that improvements in
ERLE can be achieved over that obtainable with the NLMS
algorithm alone. Results obtained from experimental data
using a handsfree terminal show a 10 dB improvement in
converged ERLE can be obtained in the low and medium
volume ranges which are usually used in handsfree phones.
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