FAST NONLINEAR ADAPTIVE FILTERING USING A PARTIAL WINDOW CONJUGATE GRADIENT ALGORITHM

A. Neil Birkett and Rafik A. Goubran

Department of Systems and Computer Engineering
Carleton University, 1125 Colonel By Drive
Ottawa, Canada, K1S 5B6
Tel: (613) 788-5747, Fax: (613) 788-5727
birkett@sce.carleton.ca goubran@sce.carleton.ca

ABSTRACT

In this paper a modified form of the partial conjugate gradient algorithm is presented for use in nonlinear filtering using neural networks. The algorithm is based on using a gradient average window to provide a trade-off between convergence rate and complexity which, depending on the choice of averaging window, is (in both complexity and speed of convergence) intermediate between the conventional backpropagation (BP) algorithm and the Newton methods. An additional simplification is introduced by replacing the calculated optimum step size \(\alpha_k \) by a normalized step size \(\alpha_0 \), in the same manner as the Normalized LMS algorithm. This new algorithm is applied to a cascaded neural network/NLMS structure for the identification of a nonlinear system. This proposed algorithm demonstrates improved convergence rates with even small choices of window size.

1.0 INTRODUCTION

The limitations of the conventional backpropagation algorithm include the uncertainty of finding the global minimum of the error function and excessively long training times required to obtain a small error output. The later shortcoming, i.e. the slow convergence to either a local or global minimum is the topic addressed in this study. Partial conjugate direction methods [1] can be regarded as being somewhat intermediate between the method of steepest descent (i.e. backpropagation) and Newton’s method, in terms of complexity and convergence properties. Thus they give the designer the option of improving the convergence rate at the expense of increased complexity.

2.0 DESCRIPTION OF LEARNING ALGORITHM

Consider a multilayer feedforward network, such as the three layer network of Figure 1. The basic mechanism behind most supervised learning rules is to update the network weights and bias terms until the mean-squared error between the network output and desired (i.e. target) signal is minimized to below a predetermined level. The error signal at the output of a neuron \(i \) at time \(n \) is defined by;

\[
e_i(n) = d_i(n) - y_i(n)
\]

(1)

The instantaneous cost function \(E_{\text{inst}} \) at time \(n \) is defined as;

\[
E_{\text{inst}}(n) = e^2(n) = \sum_{i=1}^{N_L} e_i^2(n)
\]

(2)

which is the instantaneous sum of squared errors of the network for \(N_L \) output nodes, in this case equal to one. We can define an alternate cost functions to be minimized, for example, a partial cost function \(E_{\text{partial}} \) can be calculated by taking a window \(n_w \) of past cost functions calculated using the current weight vector \(\mathbf{w}(n) \);

\[
E_{\text{partial}}(n) = \sum_{i=0}^{n_w-1} E_{\text{inst}}(n-i)|_{\mathbf{w}(n)}
\]

(3)

where \(\mathbf{w}(n) \) is a weight vector consisting all the weights in the network, including bias weights. Specifically we may write the supervector \(\mathbf{w}(n) \) as;

\[
[\mathbf{W}(n)]^T = [\mathbf{w}_0^T(n), \mathbf{w}_1^T(n), \mathbf{w}_2^T(n), \ldots, \mathbf{w}_L^T(n)]
\]

(4)

FIGURE 1. Nonlinear system identification using a three layer feedforward neural network with an input delay line.
where \(\mathbf{w}_l(n) \) is the weight vector connecting layer \(l \) to layer \(l+1 \) at time \(n \).

The windowed conjugate gradient algorithm uses \(E_{\text{partial}} \) in the calculation of the gradient for updating the weight vector each iteration. It should be noted that it is necessary that the previous values of the hidden layer outputs must be retained as well as the output layers in order to compute the windowed gradient.

The weight update formula minimizes \(E_{\text{partial}} \) by the delta rule [2]:

\[
\mathbf{w}(n+1) = \mathbf{w}(n) - \eta \frac{\partial E_{\text{partial}}}{\partial \mathbf{w}} \quad (5)
\]

We compute the gradient based on the average squared error of a window of training input/output pairs, rather than the complete set of input/output pairs (as is done in the batch training mode) or a single input/output pair (as is done in the individual update backpropagation mode). The errors however are backpropagated to previous layers in the same way as the conventional backpropagation [2] BP algorithm. The important point is that the window is moved for each new sample of the input that comes in i.e. it is a sliding window of past input/output pairs. The proposed algorithm based loosely on a linear version given in [3] is termed the Windowed Fast Conjugate Gradient Algorithm (WFCGA) and is summarized below:

Windowed Fast Conjugate Gradient Algorithm:

Initialization: Set weights and biases to random values.

For each iteration \(n \), do Steps 1, 2 and 3.

Step 1. a) Starting with an initial weight vector \(\mathbf{w}_0 \), compute the following:

\[
\mathbf{g}_0 = \left[\nabla f(\mathbf{w}_0) \right]^T
\]

\[
= \left(\frac{2}{n_w} \right) \sum_{i=0}^{n_w-1} \left[\mathbf{g}_{\text{inst}}(n-i) \right] \left[\mathbf{w}_0(n), \mathbf{x}_0(n-i), d(n-i) \right]
\]

where: \(\mathbf{g}_{\text{inst}}(n-i) \) is the instantaneous gradient calculated with the current network weight vector \(\mathbf{w}_0(n) \) and past inputs \(\mathbf{x}_0(n-i) \) and \(d(n-i) \). Both \(\mathbf{g}_{\text{inst}}(n-i) \) and \(\mathbf{w}_0(n) \) are vectors of length \(M \), where \(M \) is the total number of weights in the network.

b) set \(\mathbf{d}_0 = -\mathbf{g}_0 \)

c) compute the normalized step size parameter \(\alpha \) according to:

\[
\frac{\alpha}{\sqrt{\epsilon + \left\| \mathbf{x}(n) \right\|^2}} = \frac{\gamma}{\sqrt{\epsilon + \left\| \mathbf{x}(n) \right\|^2}}
\]

(7)

Note that \(\alpha \) could be replaced by a fixed step size here if desired.

Step 2. Repeat for \(k=0,1, \ldots n_w-1 \) where \(n_w \leq m \)

a) set \(\mathbf{w}_{k+1} = \mathbf{w}_k + \alpha \mathbf{d}_k \)

b) Compute an estimate of the gradient at \(\mathbf{w}_{k+1} \):

\[
\mathbf{g}_{k+1} = [\nabla f(\mathbf{w}_{k+1})]^T
\]

\[
= \left(\frac{2}{n_w} \right) \sum_{i=0}^{n_w-1} \left[\mathbf{g}_{\text{inst}}(n-i) \right] \left[\mathbf{w}_{k+1}(n), \mathbf{x}_0(n-i), d(n-i) \right]
\]

Note that if \(\beta_k > 1 \), go directly to Step three.

Repeat Step 2 a).

Step 3. Replace \(\mathbf{w}_0 \) by \(\mathbf{w}_k \) and go back to Step 1.

The calculation of the instantaneous gradient \(\mathbf{g}_{\text{inst}}(n-i) \) in (6) and (8) is done by evaluating (10) through (12) as follows:

\[
e(n-i) = d(n-i) - N[\mathbf{w}_{k+1}(n), \mathbf{x}_0(n-i)]
\]

(10)

is the network error output using weights \(\mathbf{w}_{k+1}(n) \) with input vector \(\mathbf{x}_0(n-i) \):

\[
\mathbf{g}_{ij}(n-i) = \delta_{ij}^1 (n-i) \cdot \mathbf{x}_0^i (n-i)
\]

(11)

is the local gradient of a particular weight where:

\[
\delta_{ij}^l (n-i) = -2e(n-i) f' (s_j^l (n-i)) \ldots l = L
\]

(12)

\[
\sum_{k=1}^{N_{i+1}} f' (s_j^l (n-i)) \cdot \delta_{ik}^l (n-i) \cdot \mathbf{w}_{jk}(n) \ldots 1 \leq l \leq L - 1
\]

Note that the vector \(\mathbf{g}_{\text{inst}}(n-i) \) has the same size as the supervector \(\mathbf{w}_k(n) \) and is formed by placing individual \(\mathbf{g}_{ij}(n-i) \) in much the same way that \(\mathbf{w}_k(n) \) is formed in (4).

Complexity: The complexity of the WFCGA is \(O(mn_w^2) \) since in Step 2, the weights are updated \(n_w \) times per iteration and the calculation of the averaged gradient is \(O(mn_w) \). Thus for \(n_w=1 \), it is equal in complexity to the BP algorithm.

3.0 SIMULATION

In this section, we apply the WFCGA to the identification of a nonlinear system constructed by generating a signal \(x \) which is then hard limited and then convolved with an exponentially decaying 50 tap impulse. The input signal \(x \) is obtained by a first order autoregressive (AR) process according to the equation \(x(n)=0.9x(n-1)+0.2v(n) \) where \(v(n) \) is a unit variance white noise sequence. The hard limiter has a linear region up to 0.5, beyond which the output is clipped with a limiting function which has a slope of 0.2. The neural network consists of a 50 tap input delay line followed by one hidden layer. The system is illustrated in Figure 2.
where a nonlinear acoustic echo cancellation is followed by a long tail impulse, for example, in nonlinear speaker and reverberant room must be identified. This is illustrated in Figure 2. A first order autoregressive signal is used to model the input signal \(x(n) \).

The specific application addressed here is nonlinear adaptive filtering and system identification, where a short term nonlinearity is followed by a long tail impulse, for example, in nonlinear acoustic echo cancellation where a nonlinear loudspeaker and reverberant room must be identified. This is illustrated in Figure 4 and is based on the Partial Adaptive Acoustic Echo Canceller (AEC) structure in Reference [4]. Referring to Figure 4, the output \(e_2(n) \) is given as:

\[
e_2(n) = e_1(n) - y_2(n) = p(n) - y_1(n) - y_2(n)
\]

where \(p(n) \) is the microphone (primary) signal, \(y_1(n) \) is the output of the TDNN and \(y_2(n) \) is the output of the delayed NLMS filter. Expanding, we obtain:

\[
e_2(n) = p(n) - y_1(n) - \sum_{i = N_1 + 1}^{N_2} w(n) x(n - i)
\]

where \(w(n) \) are the NLMS tap weights and \(x(n) \) is the information vector, \(N_1 \) is the delay length of the TDNN section and \(N_2 \) is the total impulse length. The TDNN consists of 150 taps in the delay line, and 2 and 3 nodes respectively in the 1st and 2nd hidden layers. The NLMS section has 450 taps such that the total impulse response is 600 taps.

The NLMS algorithm [2] is the baseline by which performance of alternative models is measured but it is incapable of reducing nonlinear distortion. A measure of the AEC performance is the Echo Return Loss Enhancement (ERLE) which is defined as:

\[
ERLE(dB) = \lim_{N \to \infty} \left[10 \log_{10} \frac{E[p^2(n)]}{E[e^2(n)]} \right] = 10 \log_{10} \frac{\sigma_p^2}{\sigma_e^2}
\]

where \(\sigma_p^2 \) and \(\sigma_e^2 \) refer to the variances of the primary and error signals respectively and \(E \) is the statistical expectation operator.

4.1 Simulation Results

In this section, a 50 tap neural network is employed in the identification of a room impulse constructed by passing nonlinearly distorted noise through a truncated room transfer function similar to the structure shown in Figure 2. The application of the windowed conjugate gradient algorithm using different window sizes is shown in Figure 5 and is compared to the conventional backpropagation algorithm. The figure illustrates that even mod-
est sizes of gradient window can substantially improve convergence speed.

4.2 Experimental Results

In this section, a loudspeaker is excited with a filtered noise signal such that a volume of 100 dB sound pressure level (as measured at 0.5m) is obtained. At this level, distortion is produced in the loudspeaker. We apply the nonlinear algorithms in an effort to model the nonlinearity and thus obtain improved ERLE over the linear case. Figure 6 shows the convergence of the network of

WFCGA, both high steady state ERLE and good convergence can be obtained, as shown in Figure 7.

5.0 SUMMARY

This paper introduces a variant of the partial adaptive gradient algorithm based on using a gradient averaging window and normalized step size to replace the optimum step size. The WFCGA has reduced complexity compared to the full conjugate gradient algorithm and simulations show it has much faster convergence even for low values of gradient averaging window when compared to the conventional BP algorithm. Experimental results using a combined neural network/NLMS structure to identify a loudspeaker/room at high volumes show that the new architecture is capable of improved system identification compared to a linear structure but has slower convergence due to the use of the BP algorithm. The combination of the above architecture with the WFCGA provides both a fast convergence rate and improved system identification in nonlinear environments.

6.0 REFERENCES